Laboratory :
Author :
Revue :
Year :

Pre-existing bilayer stresses modulate triglyceride accumulation in the ER versus lipid droplets
Valeria Zoni Rasha Khaddaj Pablo Campomanes Abdou Rachid Thiam Roger Schneiter Stefano Vanni
e-Life - 10 62886 - 10.7554/eLife.62886 - 2021
Cells store energy in the form of neutral lipids (NLs) packaged into micrometer-sized organelles named lipid droplets (LDs). These structures emerge from the endoplasmic reticulum (ER) at sites marked by the protein seipin, but the mechanisms regulating their biogenesis remain poorly understood. Using a combination of molecular simulations, yeast genetics, and fluorescence microscopy, we show that interactions between lipids' acyl-chains modulate the propensity of NLs to be stored in LDs, in turn preventing or promoting their accumulation in the ER membrane. Our data suggest that diacylglycerol, which is enriched at sites of LD formation, promotes the packaging of NLs into LDs, together with ER-abundant lipids, such as phosphatidylethanolamine. On the opposite end, short and saturated acyl-chains antagonize fat storage in LDs and promote accumulation of NLs in the ER. Our results provide a new conceptual understanding of LD biogenesis in the context of ER homeostasis and function.
Withdrawal and dip coating of an object from a yield-stress reservoir
Wilbert J. Smit, Christophe Kusina, Annie Colin, Jean-François Joanny
Physical Review Fluids - 6(6) - DOI:10.1103/PhysRevFluids.6.063302 - 2021
The dip-coating process consists of withdrawing immersed objects from a liquid reservoir. After withdrawal, a significant layer of liquid remains on the object. Various industrial processes (food and beverage industry, automotive industry) use this technique to coat or treat surfaces. Recent studies have shown that the thickness of deposit is determined by the flow inside the reservoir for yield-stress fluids. This is different from the behavior of simple liquids for which the coating thickness is solely determined by the flow inside the meniscus. In this work, we reexamine this question and propose a complete phase diagram linking the Newtonian case and the yield-stress fluid case. We provide asymptotic scaling laws for extreme cases. A good agreement with experiments is obtained.
A new pressure sensor array for normal stress measurement in complex fluids
Anaïs Gauthiera, Mickaël Pruvost, Olivier Gamache, and Annie Colin
Journal of Rheology - 65 583 - - 2021
A new pressure sensor array, positioned on the bottom plate of a standard torsional rheometer, is presented. It is built from a unique piezo-capacitive polymeric foam and consists of 25 capacitive pressure sensors (of surface 4.5×4.5mm2 each) built together in a 5×5 regular array. The sensor array is used to obtain a mapping of the normal stresses in complex fluids, which dramatically extends the capability of the rheometer. We demonstrate this with three examples. First, a pressure profile is reconstructed in a polymer solution, which enables the simultaneous measurement of the first and the second normal stress differences N1 and N2, with a precision of 2 Pa. In a second part, we show that negative pressures can also be measured. Finally, we focus on the normal stress fluctuations that extend both spatially and temporally in a shear-thickening suspension of cornstarch particles. We evidence the presence of a unique heterogeneity rotating very regularly. In addition to their low cost and high versatility, the sensors show here their potential to finely characterize the normal stresses in viscosimetric flows.
Aging of cornstarch particles suspended in aqueous solvents at room temperature
Christophe Kusina, Wilbert J. Smit, Jean-Baptiste Boitte, Odile Aubrun, and Annie Colin
Phys. Rev. - 103 52609 - - 2021
Starch suspensions are often used as model systems to demonstrate extreme shear-thickening effects. We study the aging of cornstarch particles in aqueous suspensions at room temperature by granulometry and rheological measurements. When starch is diluted in glycerol, no long-term changes are observed. The situation differs when water is used as solvent. For volume fractions up to 20 vol %, when the cornstarch suspensions in water are stored under continual agitation, we observe an increase in viscosity. When the cornstarch suspension is aged under quiescent conditions, no evolution of the particle size is observed. In the concentrated situation, the rheological properties vary independent of the storage condition. We show that the increase in viscosity is related to air trapped in the pore space and to the swelling of the granules and leakage of the amylopectin component of the starch into the surrounding water. The relative importance of the two processes depends upon the particle concentration and upon the energy brought to the system
Highly conductive colloidal carbon based suspension for flow-assisted electrochemical systems
Marco S. Alfonso, Hélène Parant, Jinkai Yuan, Wilfrid Neri, Eric Laurichesse, Katerina Kampioti, Annie Colin, PhilippePoulin
Iscience - 24(5) 102456 - - 2021
Carbon suspension electrodes are promising for flow-assisted electrochemical energy storage systems. They serve as flowable electrodes in electrolyte solutions of flow batteries, or flow capacitors. They can also be used for other applications such as capacitive deionization of water. However, developments of such suspensions remain challenging. The suspensions should combine low viscosity and high electronic conductivity for optimized performances. In this work, we report a flowable aqueous carbon dispersion which exhibits a viscosity of only 2 Pa.s at a shear rate of 5 s−1 for a concentration of particles of 7 wt%. This suspension displays an electronic conductivity of 65 mS/cm, nearly two orders of magnitude greater than previously investigated related materials. The investigated suspensions are stabilized by sodium alginate and arabic gum in the presence of ammonium sulfate. Their use in flowable systems for the storage and discharge of electrical charges is demonstrated.
Highly conductive colloidal carbon based suspension for flow-assisted electrochemical systems
Soufiane Abdelghani-Idrissi, Nicolas Dubouis, Alexis Grimaud, Philippe Stevens, Gwenaëlle Toussaint & Annie Colin
Scientific Reports volume - 11 4677 - - 2021
In this study, the effect of flow of the electrolyte on an electrolysis cell and a zinc cell is investigated. The gain of energy brought by the flow is discussed and compared to the viscous losses in the cells. We point out that the balance between the gained electrical power and the viscous loss power is positive only if the hydrodynamic resistance of the circuit is correctly designed and further comment on the economical viability of the whole process. A model of the studied phenomena is proposed in the last section. This analytical model captures the dynamics of the process, gives the optimal flowing conditions and the limits of the energetical rentability of the process. This study shows that the use of flowing electrolyte in zinc–air batteries can be energetically profitable with the appropriate flowing conditions.

Can unmixed complex forming polymer surfactant formulations be injected into oil reservoirs or aquifers without clogging them?
Massinissa Hamouma, Aline Delbos, Christine Dalmazzoneb and Annie Colin
Soft Matter - - - 2021
In the context of enhanced oil recovery or soil remediation, we study the role of interactions between polymers and surfactants on the injectivity of formulations containing mixtures of polymers and surfactants. We show that contrary to the first intuition, the formation of aggregates in polymers surfactants formulations is not necessarily a hindrance to the injection of these formulations into pores. It is important above all to compare the size of aggregates according to the applied shear rate and the pore size to find the formulations that may induce clogging. We highlight a new positive and unexpected phenomenon. The small aggregates that do not lead to clogging ensure the transport of the surfactant vesicles in the porous medium and limit the adsorption of the latter.

Polymer Surfactant Interactions in Oil Enhanced Recovery Processes
Massinissa Hamouma, Aline Delbos, Christine Dalmazzoneb and Annie Colin
Energy Fuels - 35(11) 9312–9321 - - 2021
A soil decontamination or enhanced oil recovery procedure typically requires the injection of a surfactant solution to reduce interfacial tension and promote oil recovery at the pore level, followed by the injection of a polymer solution to avoid the creation of preferential pathways and perform a homogeneous sweep of the reservoir. It is well known that polymers and surfactants interact with each other to form aggregates if they are of opposite charge or due to depletion interactions. To date, it is recommended to use polymers and surfactants that do not interact with each other to avoid clogging the wells. We show here that this precaution is not necessary and that in some cases, the use of interacting polymer and surfactant systems can even be an advantage for oil recovery. Contrary to previous studies, we injected previously mixed and homogeneous formulations into the porous medium and not a sequence of surfactant and polymer plugs. In addition to a total recovery of the oil in place, this strategy allows to limit the adsorption of the surfactant in the pore.

Protein-protected metal nanoclusters as diagnostic and therapeutic platforms for biomedical applications
ImanZare, Daniel M.Chevrier, Anna Cifuentes-Rius, NasrinMoradi, Yunlei Xianyu, SubhadipGhosh, LauraTrapiella-Alfonso, Ye Tian, Alireza Shourangiz-Haghighi, Saptarshi Mukherjee, Kelong Fan, Michael R.Hamblin
Materials Today - - - 2021
The use of protein templates for the controlled synthesis of inorganic nanostructures has gained considerable attention in multidisciplinary fields, including electronics, optics, energy, sensing, and biomedicine, owing to their biocompatibility and structural programmability. The possible synergistic combination of protein scaffolds (and other biomolecules/biopolymers) with metal nanoclusters (MNCs) has created a new class of highly photoluminescent nanoprobes and nanodevices. For the first time, we will discuss the different types of protein templates used for MNC preparation with an emphasis on their optoelectronic properties for application. In particular, applications of protein-coated MNCs for chemosensing or biosensing of cancer biomarkers, neurotransmitters, pathogenic microorganisms, biomolecules, pharmaceutical compounds, and immunoassays are discussed in detail herein. Fluorescence-based and multimodal molecular imaging, both in vitro and in vivo based on functional proteins are also covered. Furthermore, we discuss the burgeoning growth of protein-coated MNCs (e.g., gold (Au) and silver (Ag) NCs) to develop synergistic nanotherapeutics with potential biomedical applications in chemotherapy, radiotherapy, photodynamic therapy (PDT), photothermal therapy (PTT), and antibacterial activity, as well as MNC-containing nanocomposites for enhanced bioimaging and controlled drug release. Overall, the proposed review highlights the recent progress, technical challenges and new horizons in this field, and summarizes our understanding of how MNC properties interact with the biological function of protein scaffolds to develop synergistic nanotherapeutics towards clinical translation.
Superparamagnetic iron oxide nanoparticles functionalized with a binary alkoxysilane array and poly(4-vinylpyridine) for magnetic targeting and pH-responsive release of doxorubicin
Fernando Espinola-Portilla,ab Oracio Serrano-Torres, Gilberto F. Hurtado-López, Uriel Sierra, Anne Varenne, Fanny d’Orlyé, Laura Trapiella-Alfonso, Silvia Gutiérrez-Granados and Gonzalo Ramírez-García
New Journal of Chemistry - 45 3600-3609 - - 2021
Chemotherapeutic drugs cause harmful side effects in cancer patients due to their low specificity, calling for the development of more effective strategies for their dosage and administration. In this work, a smart drug nanocarrier was synthesized through the covalent functionalization of superparamagnetic iron oxide nanoparticles with a triblock copolymer, which includes a dual alkoxysilane array, ((3-aminopropyl)triethoxysilane and (trimethoxysilyl)propyl methacrylate), and the pH-responsive poly(4-vinylpyridine). The synthetic conditions were optimized through structural and physicochemical characterization after every functionalization step. Afterward, the systematic loading, capture, and release of the anticancer drug doxorubicin (Dox) were demonstrated at relevant pH values using a specially designed square wave voltammetry technique. This strategy revealed that the P4VP polymeric chains underwent reversible hydrophobic to hydrophilic transitions in acidic media, triggering a molecular distention driven by the induced intermolecular electro-repulsive forces. Thereafter, the Dox solution can easily penetrate the polymeric layer at pH values below 5.62 (the pKa of poly(4-vinylpyridine)), allowing a loading of 61.9 ± 5.4 mg g−1 in the nanocomplex. After deprotonation in a pH 7.4 buffer solution, the polymer chains underwent intermolecular interactions again, capturing the drug molecules. Subsequently, 93.5 ± 3.5% of the payload was released upon suspension of the nanocomplex in pH 4.0 media, which is significantly more acidic than healthy tissues. Since the magnetic properties of the MNPs were practically unaffected by the surface modification, this nanocomplex offers a versatile strategy for the pH-selective and magnetically-guided release of drugs.


- For any publication having received the support of the IPGG (presence in the IPGG premises, use of the IPGG technological platform, collaboration between IPGG teams, linked to an IPGG doctoral or postdoctoral grant, or use of the common spaces), you must indicate the following sentence : "This work has received the support of "Institut Pierre-Gilles de Gennes" (laboratoire d'excellence, "Investissements d'avenir" program ANR-10-IDEX-0001-02 PSL and ANR-10-LABX-31.) ".

- For any publication of results obtained through the use of equipment purchased by the Equipex IPGG, you must add the following coding: "ANR-10-EQPX-34".

579 publications.