Université PSL

Publications

SEARCH

Laboratory :
Author :
Revue :
Year :
Osmotic pressures of lysozyme solutions from gas-like to crystal states
Coralie Pasquier,ab Sylvie Beaufils,b Antoine Bouchoux, Sophie Rigault, Bernard Cabane, Mikael Lund, Valérie Lechevalier,a Cécile Le Floch-Fouéré,a Maryvonne Pasco,a Gilles Pabœuf,b Javier Pérezf and Stéphane Pezennec*a
Phys. Chem. - 18 28458-28465 - DOI: 10.1039/C6CP03867K -
We obtained osmotic pressure data of lysozyme solutions, describing their physical states over a wide concentration range, using osmotic stress for pressures between 0.05 bar and about 40 bar and volume fractions between 0.01 and 0.61. The osmotic pressure vs. volume fraction data consist of a dilute, gas-phase regime, a transition regime with a high-compressibility plateau, and a concentrated regime where the system is nearly incompressible. The first two regimes are shifted towards a higher protein volume fraction upon decreasing the strength or the range of electrostatic interactions. We describe this shift and the overall shape of the experimental data in these two regimes through a model accounting for a steric repulsion, a short-range van der Waals attraction and a screened electrostatic repulsion. The transition is caused by crystallization, as shown by small-angle X-ray scattering. We verified that our data points correspond to thermodynamic equilibria, and thus that they consist of the reference experimental counterpart of a thermodynamic equation of state.
Coarse-grained modeling of the intrinsically disordered protein Histatin 5 in solution: Monte Carlo simulations in combination with SAXS.
Cragnell C, Durand D, Cabane B, Skepö
Proteins - 84(6) 777-91 - doi: 10.1002/prot.25025. -
Monte Carlo simulations and coarse-grained modeling have been used to analyze Histatin 5, an unstructured short cationic salivary peptide known to have anticandidical properties. The calculated scattering functions have been compared with intensity curves and the distance distribution function P(r) obtained from small angle X-ray scattering (SAXS), at both high and low salt concentrations. The aim was to achieve a molecular understanding and a physico-chemical insight of the obtained SAXS results and to gain information of the conformational changes of Histatin 5 due to altering salt content, charge distribution, and net charge. From a modeling perspective, the accuracy of the electrostatic interactions are of special interest. The used coarse-grained model was based on the primitive model in which charged hard spheres differing in charge and in size represent the ionic particles, and the solvent only enters the model through its relative permittivity. The Hamiltonian of the model comprises three different contributions: (i) excluded volumes, (ii) electrostatic, and (iii) van der Waals interactions. Even though the model can be considered as gross omitting all atomistic details, a great correspondence is obtained with the experimental results. Proteins 2016; 84:777-791.
Traffic collision during the breakup of an aqueous viscous compound jet
Hugo Doméjean, Jérôme Bibette, and Nicolas Bremond
Phys. Rev. Fluids - 1 63903 - https://doi.org/10.1103/PhysRevFluids.1.063903 -
Liquid jets ultimately break up into droplets through an instability driven by surface tension. For highly viscous liquids, drops are connected by cylindrical liquid filaments whose radii linearly decrease with time, thus forming drops on a string structure. For a jet composed of two aqueous phases made in air by coaxial extrusion, we observe that, for moderate Weber and capillary numbers, drops slow down with different velocities, leading to drop coalescence. The origin of the traffic collision is linked to the spatial feature of the capillary instability where capillary and viscous forces acting on the drops evolve along the jet and ultimately amplify small velocity fluctuations. The emergence of such fluctuations is related to the unstable nature of the annular coflow of liquids having contrasting viscoelastic properties. From a practical point of view, flow and actuation conditions can be adjusted to inhibit drop collision and thus drop coalescence. These findings allow then the fabrication of monodisperse submillimeter core-shell objects based on the fragmentation of compound jets made of polymer solutions that find applications for three-dimensional cell culture.
Microfluidic fabrication of composite hydrogel microparticles in the size range of blood cells
A. Pittermannová, Z. Ruberová, A. Zadražil, N. Bremond, J. Bibetteb and F. Štěpánek
RSC Adv. - 6 103532-103540 - DOI: 10.1039/C6RA23003B -
The fabrication of alginate hydrogel microparticles with embedded liposomes and magnetic nanoparticles for radiofrequency controlled release of encapsulated chemical cargo was considered. An extractive gelation process was implemented in a microfluidic device, which enabled the production of uniform composite microparticles of dimensions comparable to those of blood cells (between 5 and 10 μm). The critical parameters that control the extractive gelation process were systematically explored and feasible values that provide microgel particles of a defined size and morphology were identified. First, the initial water-in-oil droplet is formed in a flow-focusing junction whose size is controlled by the flow-rate of the oil phase. Then, the train of droplets is sandwiched between two streams of oil containing calcium ions. In that way, a flux of water molecules from the droplets towards the continuous phase as well as a transport of calcium ions towards the disperse phase are initiated. The final microparticle properties were thus found to be sensitive to three elementary sub-processes: (i) the initial droplet size; (ii) the extraction of water into the oil phase, which was controlled by the volume of the oil phase and its initial moisture content; and (iii) the kinetics of ionic cross-linking of the alginate matrix, which was controlled by the varying calcium concentration. The size and morphology of the final composite microgels were fully characterized.
Interfacial rheometry of polymer at a water–oil interface by intra-pair magnetophoresis
Stefano Cappelli, Arthur M. de Jong, Jean Baudryc and Menno W. J. Prins
Soft Matter - 12 5551-5562 - DOI: 10.1039/C5SM02917A -


We describe an interfacial rheometry technique based on pairs of micrometer-sized magnetic particles at a fluid–fluid interface. The particles are repeatedly attracted and repelled by well-controlled magnetic dipole–dipole forces, so-called interfacial rheometry by intra-pair magnetophoresis (IPM). From the forces (∼pN), displacements (∼μm) and velocities (∼μm s−1) of the particles we are able to quantify the interfacial drag coefficient of particles within a few seconds and over very long timescales. The use of local dipole–dipole forces makes the system insensitive to fluid flow and suited for simultaneously recording many particles in parallel over a long period of time. We apply IPM to study the time-dependent adsorption of an oil-soluble amino-modified silicone polymer at a water–oil interface using carboxylated magnetic particles. At low polymer concentration the carboxylated particles remain on the water side of the water–oil interface, while at high polymer concentrations the particles transit into the oil phase. Both conditions show a drag coefficient that does not depend on time. However, at intermediate polymer concentrations data show an increase of the interfacial drag coefficient as a function of time, with an increase over more than three orders of magnitude (10−7 to 10−4 N s m−1), pointing to a strong polymer-polymer interaction at the interface. The time-dependence of the interfacial drag appears to be highly sensitive to the polymer concentration and to the ionic strength of the aqueous phase. We foresee that IPM will be a very convenient technique to study fluid–fluid interfaces for a broad range of materials systems.
How do polydisperse repulsive colloids crystallize
Robert Botet, Bernard Cabane, Lucas Goehring, Joaquim Lic and Franck Artznerd
Faraday Discuss - 186 229-240 - DOI: 10.1039/C5FD00145E -
A modified version of the Gibbs-ensemble Monte-Carlo method reveals how polydisperse charged colloidal particles can build complex colloidal crystals. It provides general rules that are applicable to this fractionated crystallization that stems from size segregation. It explains the spontaneous formation of complex crystals with very large unit-cells in suspensions of nanoparticles with a broad size distribution.
Hiding in Plain View: Colloidal Self-Assembly from Polydisperse Populations
Cabane B, Li J, Artzner F, Botet R, Labbez C, Bareigts G, Sztucki M, Goehring L.
Phys. Rev. Lett. - 116(20) 208001. - doi: 10.1103/PhysRevLett.116.208001 -
We report small-angle x-ray scattering experiments on aqueous dispersions of colloidal silica with a broad monomodal size distribution (polydispersity, 14%; size, 8 nm). Over a range of volume fractions, the silica particles segregate to build first one, then two distinct sets of colloidal crystals. These dispersions thus demonstrate fractional crystallization and multiple-phase (bcc, Laves AB_{2}, liquid) coexistence. Their remarkable ability to build complex crystal structures from a polydisperse population originates from the intermediate-range nature of interparticle forces, and it suggests routes for designing self-assembling colloidal crystals from the bottom up.
Lineage Tracking for Probing Heritable Phenotypes at Single-Cell Resolution
Denis Cottinet , Florence Condamine, Nicolas Bremond, Andrew D. Griffiths, Paul B. Rainey, J. Arjan G. M. de Visser, Jean Baudry, Jérôme Bibette
- 11(4): 152395 - https://doi.org/10.1371/journal.pone.0152395 -
Determining the phenotype and genotype of single cells is central to understand microbial evolution. DNA sequencing technologies allow the detection of mutants at high resolution, but similar approaches for phenotypic analyses are still lacking. We show that a drop-based millifluidic system enables the detection of heritable phenotypic changes in evolving bacterial populations. At time intervals, cells were sampled and individually compartmentalized in 100 nL drops. Growth through 15 generations was monitored using a fluorescent protein reporter. Amplification of heritable changes–via growth–over multiple generations yields phenotypically distinct clusters reflecting variation relevant for evolution. To demonstrate the utility of this approach, we follow the evolution of Escherichia coli populations during 30 days of starvation. Phenotypic diversity was observed to rapidly increase upon starvation with the emergence of heritable phenotypes. Mutations corresponding to each phenotypic class were identified by DNA sequencing. This scalable lineage-tracking technology opens the door to large-scale phenotyping methods with special utility for microbiology and microbial population biology.
Digital antimicrobial susceptibility testing usingtheMilliDroptechnology
L. Jiang & L. Boitard & P. Broyer & A.-C. Chareire & P. Bourne-Branchu & P. Mahé & M. Tournoud & C. Franceschi & G. Zambardi & J. Baudry & J. Bibette
Eur J Clin Microbiol Infect Dis. - 35(3) 415-22 - doi: 10.1007/s10096-015-2554-z -
We present the MilliDrop Analyzer (MDA), a droplet-based millifluidic system for digital antimicrobial susceptibility testing (D-AST), which enables us to determine minimum inhibitory concentrations (MICs) precisely and accurately. The MilliDrop technology was validated by using resazurin for fluorescence readout, for comparison with standard methodology, and for conducting reproducibility studies. In this first assessment, the susceptibility of a reference Gram-negative strain Escherichia coli ATCC 25922 to gentamicin, chloramphenicol, and nalidixic acid were tested by the MDA, VITEK®2, and broth microdilution as a reference standard. We measured the susceptibility of clinically relevant Gram-positive strains of Staphylococcus aureus to vancomycin, including vancomycin-intermediate S. aureus (VISA), heterogeneous vancomycin-intermediate S. aureus (hVISA), and vancomycin-susceptible S. aureus (VSSA) strains. The MDA provided results which were much more accurate than those of VITEK®2 and standard broth microdilution. The enhanced accuracy enabled us to reliably discriminate between VSSA and hVISA strains.
Equation of state of PEG/PEO in good solvent. Comparison between a one- parameter EOS and experiments
Joaquim Li, Martin Turesson, Caroline Anderberg Haglund, Bernard Cabane, Marie Skepö
JPOL - 3861(15) 205-213 - doi:10.1016/j.polymer.2015.10.056 -
We investigate, through osmotic pressure measurements, the validity of the single-parameter equation of state (EOS) for solutions of polyethylene glycols in water, by Cohen et al.1,2 We show that it is physically meaningful and that a reasonable good correspondence between the osmotic pressures for PEG35 in large range of concentrations is obtained. We also take the chain length dependence into account in our analysis, as suggested by Cohen et al. By recalculating the experimental pressures in the paper by Jönsson et al.3 applying the new calibration curve, which is based on the experimental results obtained in this study and the EOS obtained by Cohen et al., there is almost a perfect correspondence between the simulations and the experiments. These results have implications for correctly probing macromolecular interactions in wide range of systems when applying the osmotic stress method.

414 publications.