Publications

SEARCH

Laboratory :
Author :
Revue :
Year :

Microfluidic fabrication of composite hydrogel microparticles in the size range of blood cells
A. Pittermannová, Z. Ruberová, A. Zadražil, N. Bremond, J. Bibetteb and F. Štěpánek
RSC Adv. - 6 103532-103540 - DOI: 10.1039/C6RA23003B -
The fabrication of alginate hydrogel microparticles with embedded liposomes and magnetic nanoparticles for radiofrequency controlled release of encapsulated chemical cargo was considered. An extractive gelation process was implemented in a microfluidic device, which enabled the production of uniform composite microparticles of dimensions comparable to those of blood cells (between 5 and 10 μm). The critical parameters that control the extractive gelation process were systematically explored and feasible values that provide microgel particles of a defined size and morphology were identified. First, the initial water-in-oil droplet is formed in a flow-focusing junction whose size is controlled by the flow-rate of the oil phase. Then, the train of droplets is sandwiched between two streams of oil containing calcium ions. In that way, a flux of water molecules from the droplets towards the continuous phase as well as a transport of calcium ions towards the disperse phase are initiated. The final microparticle properties were thus found to be sensitive to three elementary sub-processes: (i) the initial droplet size; (ii) the extraction of water into the oil phase, which was controlled by the volume of the oil phase and its initial moisture content; and (iii) the kinetics of ionic cross-linking of the alginate matrix, which was controlled by the varying calcium concentration. The size and morphology of the final composite microgels were fully characterized.
Interfacial rheometry of polymer at a water–oil interface by intra-pair magnetophoresis
Stefano Cappelli, Arthur M. de Jong, Jean Baudryc and Menno W. J. Prins
Soft Matter - 12 5551-5562 - DOI: 10.1039/C5SM02917A -


We describe an interfacial rheometry technique based on pairs of micrometer-sized magnetic particles at a fluid–fluid interface. The particles are repeatedly attracted and repelled by well-controlled magnetic dipole–dipole forces, so-called interfacial rheometry by intra-pair magnetophoresis (IPM). From the forces (∼pN), displacements (∼μm) and velocities (∼μm s−1) of the particles we are able to quantify the interfacial drag coefficient of particles within a few seconds and over very long timescales. The use of local dipole–dipole forces makes the system insensitive to fluid flow and suited for simultaneously recording many particles in parallel over a long period of time. We apply IPM to study the time-dependent adsorption of an oil-soluble amino-modified silicone polymer at a water–oil interface using carboxylated magnetic particles. At low polymer concentration the carboxylated particles remain on the water side of the water–oil interface, while at high polymer concentrations the particles transit into the oil phase. Both conditions show a drag coefficient that does not depend on time. However, at intermediate polymer concentrations data show an increase of the interfacial drag coefficient as a function of time, with an increase over more than three orders of magnitude (10−7 to 10−4 N s m−1), pointing to a strong polymer-polymer interaction at the interface. The time-dependence of the interfacial drag appears to be highly sensitive to the polymer concentration and to the ionic strength of the aqueous phase. We foresee that IPM will be a very convenient technique to study fluid–fluid interfaces for a broad range of materials systems.
How do polydisperse repulsive colloids crystallize
Robert Botet, Bernard Cabane, Lucas Goehring, Joaquim Lic and Franck Artznerd
Faraday Discuss - 186 229-240 - DOI: 10.1039/C5FD00145E -
A modified version of the Gibbs-ensemble Monte-Carlo method reveals how polydisperse charged colloidal particles can build complex colloidal crystals. It provides general rules that are applicable to this fractionated crystallization that stems from size segregation. It explains the spontaneous formation of complex crystals with very large unit-cells in suspensions of nanoparticles with a broad size distribution.
Hiding in Plain View: Colloidal Self-Assembly from Polydisperse Populations
Cabane B, Li J, Artzner F, Botet R, Labbez C, Bareigts G, Sztucki M, Goehring L.
Phys. Rev. Lett. - 116(20) 208001. - doi: 10.1103/PhysRevLett.116.208001 -
We report small-angle x-ray scattering experiments on aqueous dispersions of colloidal silica with a broad monomodal size distribution (polydispersity, 14%; size, 8 nm). Over a range of volume fractions, the silica particles segregate to build first one, then two distinct sets of colloidal crystals. These dispersions thus demonstrate fractional crystallization and multiple-phase (bcc, Laves AB_{2}, liquid) coexistence. Their remarkable ability to build complex crystal structures from a polydisperse population originates from the intermediate-range nature of interparticle forces, and it suggests routes for designing self-assembling colloidal crystals from the bottom up.
Lineage Tracking for Probing Heritable Phenotypes at Single-Cell Resolution
Denis Cottinet , Florence Condamine, Nicolas Bremond, Andrew D. Griffiths, Paul B. Rainey, J. Arjan G. M. de Visser, Jean Baudry, Jérôme Bibette
- 11(4): 152395 - https://doi.org/10.1371/journal.pone.0152395 -
Determining the phenotype and genotype of single cells is central to understand microbial evolution. DNA sequencing technologies allow the detection of mutants at high resolution, but similar approaches for phenotypic analyses are still lacking. We show that a drop-based millifluidic system enables the detection of heritable phenotypic changes in evolving bacterial populations. At time intervals, cells were sampled and individually compartmentalized in 100 nL drops. Growth through 15 generations was monitored using a fluorescent protein reporter. Amplification of heritable changes–via growth–over multiple generations yields phenotypically distinct clusters reflecting variation relevant for evolution. To demonstrate the utility of this approach, we follow the evolution of Escherichia coli populations during 30 days of starvation. Phenotypic diversity was observed to rapidly increase upon starvation with the emergence of heritable phenotypes. Mutations corresponding to each phenotypic class were identified by DNA sequencing. This scalable lineage-tracking technology opens the door to large-scale phenotyping methods with special utility for microbiology and microbial population biology.
Digital antimicrobial susceptibility testing usingtheMilliDroptechnology
L. Jiang & L. Boitard & P. Broyer & A.-C. Chareire & P. Bourne-Branchu & P. Mahé & M. Tournoud & C. Franceschi & G. Zambardi & J. Baudry & J. Bibette
Eur J Clin Microbiol Infect Dis. - 35(3) 415-22 - doi: 10.1007/s10096-015-2554-z -
We present the MilliDrop Analyzer (MDA), a droplet-based millifluidic system for digital antimicrobial susceptibility testing (D-AST), which enables us to determine minimum inhibitory concentrations (MICs) precisely and accurately. The MilliDrop technology was validated by using resazurin for fluorescence readout, for comparison with standard methodology, and for conducting reproducibility studies. In this first assessment, the susceptibility of a reference Gram-negative strain Escherichia coli ATCC 25922 to gentamicin, chloramphenicol, and nalidixic acid were tested by the MDA, VITEK®2, and broth microdilution as a reference standard. We measured the susceptibility of clinically relevant Gram-positive strains of Staphylococcus aureus to vancomycin, including vancomycin-intermediate S. aureus (VISA), heterogeneous vancomycin-intermediate S. aureus (hVISA), and vancomycin-susceptible S. aureus (VSSA) strains. The MDA provided results which were much more accurate than those of VITEK®2 and standard broth microdilution. The enhanced accuracy enabled us to reliably discriminate between VSSA and hVISA strains.
Nature of flocculation and tactoid formation in montmorillonite: the role of pH
M. Segad, T. Åkesson, B. Cabanec and Bo Jönssonb
Phys. Chem. - 17 29608-29615 - DOI: 10.1039/C5CP04007H -
The dissolution and swelling properties of montmorillonite at different pH have been studied, using small angle X-ray scattering (SAXS), imaging and osmotic stress methods combined with Monte Carlo simulations. The acidity of montmorillonite dispersions has been varied as well as the counterions to the net negatively charged platelets. At low pH, Na montmorillonite dissolves and among other species Al3+ is released, hydrated, polymerized and then it replaces the counterions in the clay. This dramatically changes the microstructure of Na montmorillonite, which instead of having fully exfoliated platelets, turns into a structure of aggregated platelets, so-called tactoids. Montmorillonite dispersion still has a significant extra-lamellar swelling among the tactoids due to the presence of very small nanoplatelets.
Fast Magnetic Field-Enhanced Linear Colloidal Agglutination Immunoassay
Aurélien Daynès, Nevzat Temurok, Jean-Philippe Gineys, Gilles Cauet, Philippe Nerin, Jean Baudry, and Jérôme Bibette
Anal. Chem. - 87 (15) 7583–7587 - DOI: 10.1021/acs.analchem.5b00279 -
We present the principle of a fast magnetic field enhanced colloidal agglutination assay, which is based on the acceleration of the recognition rate between ligands and receptors induced by magnetic forces.1 By applying a homogeneous magnetic field of 20 mT for only 7 s, we detect CRP (C-reactive protein) in human serum at a concentration as low as 1 pM for a total cycle time of about 1 min in a prototype analyzer. Such a short measurement time does not impair the performances of the assay when compared to longer experiments. The concentration range dynamic is shown to cover 3 orders of magnitude. An analytical model of agglutination is also successfully fitting our data obtained with a short magnetic pulse.
The mechanism of eccrine sweat pore plugging by aluminium salts using microfluidics combined with small angle X-ray scattering.
Bretagne A, Cotot F, Arnaud-Roux M, Sztucki M, Cabane B, Galey JB.
Soft Matter - 13(20) 3812-3821 - doi: 10.1039/c6sm02510b. -
Aluminium salts are widely used to control sweating for personal hygiene purposes. Their mechanism of action as antiperspirants was previously thought to be a superficial plugging of eccrine sweat pores by the aluminium hydroxide gel. Here we present a microfluidic T junction device that mimics sweat ducts, and is designed for the real time study of interactions between sweat and ACH (Aluminium Chloro Hydrate) under conditions that lead to plug formation. We used this device to image and measure the diffusion of aluminium polycationic species in sweat counter flow. We report the results of small angle X-ray scattering experiments performed to determine the structure and composition of the plug, using BSA (Bovine Serum Albumin) as a model of sweat proteins. Our results show that pore occlusion occurs as a result of the aggregation of sweat proteins by aluminium polycations. Mapping of the device shows that this aggregation is initiated in the T junction at the location where the flow of aluminium polycations joins the flow of BSA. The mechanism involves two stages: (1) a nucleation stage in which aggregates of protein and polycations bind to the wall of the sweat duct and form a tenuous membrane, which extends across the junction; (2) a growth stage in which this membrane collects proteins that are carried by hydrodynamic flow in the sweat channel and polycations that diffuse into this channel. These results could open up perspectives to find new antiperspirant agents with an improved efficacy.

TO THE IPGG TEAMS:

- For any publication having received the support of the IPGG (presence in the IPGG premises, use of the IPGG technological platform, collaboration between IPGG teams, linked to an IPGG doctoral or postdoctoral grant, or use of the common spaces), you must indicate the following sentence : "This work has received the support of "Institut Pierre-Gilles de Gennes" (laboratoire d'excellence, "Investissements d'avenir" program ANR-10-IDEX-0001-02 PSL and ANR-10-LABX-31.) ".

- For any publication of results obtained through the use of equipment purchased by the Equipex IPGG, you must add the following coding: "ANR-10-EQPX-34".

579 publications.