Université PSL

Publications

SEARCH

Laboratory :
Author :
Revue :
Year :
New avenues for the large-scale harvesting of blue energy
Alessandro Siria, Marie-Laure Bocquet & Lydéric Bocquet
Nature Reviews Chemistry - 0091 - doi: 10.1039/c7sm01963g - 2018
Salinity gradients have been identified as promising clean, renewable and non-intermittent sources of energy — so-called blue energy. However, the low efficiency of current harvesting technologies is a major limitation for large-scale viability and is mostly due to the low performances of the membrane processes currently in use. Advances in materials fabrication with dedicated chemical properties can resolve this bottleneck and lead to a new class of membranes for blue-energy conversion. In this Perspective, we briefly present current technologies for the conversion of blue energy, describe their performances and note their limitations. We then discuss new avenues for the development of a new class of membranes, combining considerations in nanoscale fluid dynamics and surface chemistry. Finally, we discuss how new functionalities originating from the exotic behaviour of fluids in the nanoscale regime can further boost energy conversion, making osmotic energy a tangible, clean alternative.
New avenues for the large-scale harvesting of blue energy
Alessandro Siria, Marie-Laure Bocquet & Lydéric Bocquet
Nature Reviews Chemistry - 0091 - doi:10.1038/s41570-017-0091 - 2018
Salinity gradients have been identified as promising clean, renewable and non-intermittent sources of energy — so-called blue energy. However, the low efficiency of current harvesting technologies is a major limitation for large-scale viability and is mostly due to the low performances of the membrane processes currently in use. Advances in materials fabrication with dedicated chemical properties can resolve this bottleneck and lead to a new class of membranes for blue-energy conversion. In this Perspective, we briefly present current technologies for the conversion of blue energy, describe their performances and note their limitations. We then discuss new avenues for the development of a new class of membranes, combining considerations in nanoscale fluid dynamics and surface chemistry. Finally, we discuss how new functionalities originating from the exotic behaviour of fluids in the nanoscale regime can further boost energy conversion, making osmotic energy a tangible, clean alternative.
Active sieving across driven nanopores for tunable selectivity
Sophie Marbach and Lydéric Bocqueta)
J Phys Chem C - 147 15 - doi.org/10.1063/1.4997993 - 2018
Molecular separation traditionally relies on sieving processes across passive nanoporous membranes. Here we explore theoretically the concept of non-equilibrium active sieving. We investigate a simple model for an active noisy nanopore, where gating—in terms of size or charge—is externally driven at a tunable frequency. Our analytical and numerical results unveil a rich sieving diagram in terms of the forced gating frequency. Unexpectedly, the separation ability is strongly increased as compared to its passive (zero frequency) counterpart. It also points to the possibility of tuning dynamically the osmotic pressure. Active separation outperforms passive sieving and represents a promising avenue for advanced filtration.
Flow and fracture near the sol–gel transition of silica nanoparticle suspensions
Gustavo E. Gimenes a and Elisabeth Bouchaudbc
Soft Matter - 14 8036-8043 - DOI:10.1039/C8SM01247D - 2018
We analyze the evolution of the mechanical response of a colloidal suspension to an external tensile stress, from fracture to flow, as a function of the distance from the sol–gel transition. We cease to observe cracks at a finite distance from the transition. In an intermediate region where the phenomenon is clearly hysteretic, we observe the coexistence of both flow and fracture. Even when cracks are observed, the material in fact flows over a distance that increases in the vicinity of the transition.
Microfluidic actuators based on temperature-responsive hydrogels
Loïc D'Eramo, Benjamin Chollet, Marie Leman, Ekkachai Martwong, Mengxing Li, Hubert Geisler, Jules Dupire, Margaux Kerdraon, Clémence Vergne, Fabrice Monti, Yvette Tran & Patrick Tabeling
Microsystems & Nanoengineering - 4 17069 - doi.org/10.1038/micronano.2017.69 - 2018
The concept of using stimuli-responsive hydrogels to actuate fluids in microfluidic devices is particularly attractive, but limitations, in terms of spatial resolution, speed, reliability and integration, have hindered its development during the past two decades. By patterning and grafting poly(N-isopropylacrylamide) PNIPAM hydrogel films on plane substrates with a 2 μm horizontal resolution and closing the system afterward, we have succeeded in unblocking bottlenecks that thermo-sensitive hydrogel technology has been challenged with until now. In this paper, we demonstrate, for the first time with this technology, devices with up to 7800 actuated micro-cages that sequester and release solutes, along with valves actuated individually with closing and opening switching times of 0.6±0.1 and 0.25±0.15 s, respectively. Two applications of this technology are illustrated in the domain of single cell handling and the nuclear acid amplification test (NAAT) for the Human Synaptojanin 1 gene, which is suspected to be involved in several neurodegenerative diseases such as Parkinson’s disease. The performance of the temperature-responsive hydrogels we demonstrate here suggests that in association with their moderate costs, hydrogels may represent an alternative to the actuation or handling techniques currently used in microfluidics, that are, pressure actuated polydimethylsiloxane (PDMS) valves and droplets.
Innate Immune Signals Induce Anterograde Endosome Transport Promoting MHC Class I Cross-Presentation.
Weimershaus M, Mauvais FX, Saveanu L, Adiko C, Babdor J, Abramova A, Montealegre S, Lawand M, Evnouchidou I, Huber KJ, Chadt A, Zwick M, Vargas P, Dussiot M, Lennon-Dumenil AM, Brocker T, Al-Hasani H, van Endert P.
Cell Reports - 24(13) 3568-3581 - doi: 10.1016/j.celrep.2018.08.041 - 2018
Both cross-presentation of antigens by dendritic cells, a key pathway triggering T cell immunity and immune tolerance, and survival of several pathogens residing in intracellular vacuoles are intimately linked to delayed maturation of vesicles containing internalized antigens and microbes. However, how early endosome or phagosome identity is maintained is incompletely understood. We show that Toll-like receptor 4 (TLR4) and Fc receptor ligation induces interaction of the GTPase Rab14 with the kinesin KIF16b mediating plus-end-directed microtubule transport of endosomes. As a result, Rab14 recruitment to phagosomes delays their maturation and killing of an internalized pathogen. Enhancing anterograde transport by overexpressing Rab14, promoting the GTP-bound Rab14 state, or inhibiting retrograde transport upregulates cross-presentation. Conversely, reducing Rab14 expression, destabilizing Rab14 endosomes, and inhibiting anterograde microtubule transport by Kif16b knockdown compromise cross-presentation. Therefore, regulation of early endosome trafficking by innate immune signals is a critical parameter in cross-presentation by dendritic cells.
Diversification of human plasmacytoid predendritic cells in response to a single stimulus
Alculumbre SG, Saint-André V1, Di Domizio J, Vargas P, Sirven P, Bost P, Maurin M, Maiuri P, Wery M, Roman MS, Savey L, Touzot M, Terrier B, Saadoun D, Conrad C, Gilliet M, Morillon A, Soumelis V.
Nat Immunol. - 19(1) 63-75 - doi: 10.1038/s41590-017-0012-z - 2018
Innate immune cells adjust to microbial and inflammatory stimuli through a process termed environmental plasticity, which links a given individual stimulus to a unique activated state. Here, we report that activation of human plasmacytoid predendritic cells (pDCs) with a single microbial or cytokine stimulus triggers cell diversification into three stable subpopulations (P1-P3). P1-pDCs (PD-L1+CD80-) displayed a plasmacytoid morphology and specialization for type I interferon production. P3-pDCs (PD-L1-CD80+) adopted a dendritic morphology and adaptive immune functions. P2-pDCs (PD-L1+CD80+) displayed both innate and adaptive functions. Each subpopulation expressed a specific coding- and long-noncoding-RNA signature and was stable after secondary stimulation. P1-pDCs were detected in samples from patients with lupus or psoriasis. pDC diversification was independent of cell divisions or preexisting heterogeneity within steady-state pDCs but was controlled by a TNF autocrine and/or paracrine communication loop. Our findings reveal a novel mechanism for diversity and division of labor in innate immune cells.
Spontaneous migration of cellular aggregates from giant keratocytes to running spheroids
Grégory Beaune, Carles Blanch-Mercader, Stéphane Douezan, Julien Dumond, David Gonzalez-Rodriguez, Damien Cuvelier, Thierry Ondarçuhu, Pierre Sens, Sylvie Dufour, Michael P. Murrell, and Françoise Brochard-Wyart
Cell Sci - 115 (51) 12926-12931 - doi.org/10.1073/pnas.1811348115 - 2018
Despite extensive knowledge on the mechanisms that drive single-cell migration, those governing the migration of cell clusters, as occurring during embryonic development and cancer metastasis, remain poorly understood. Here, we investigate the collective migration of cell on adhesive gels with variable rigidity, using 3D cellular aggregates as a model system. After initial adhesion to the substrate, aggregates spread by expanding outward a cell monolayer, whose dynamics is optimal in a narrow range of rigidities. Fast expansion gives rise to the accumulation of mechanical tension that leads to the rupture of cell–cell contacts and the nucleation of holes within the monolayer, which becomes unstable and undergoes dewetting like a liquid film. This leads to a symmetry breaking and causes the entire aggregate to move as a single entity. Varying the substrate rigidity modulates the extent of dewetting and induces different modes of aggregate motion: “giant keratocytes,” where the lamellipodium is a cell monolayer that expands at the front and retracts at the back; “penguins,” characterized by bipedal locomotion; and “running spheroids,” for nonspreading aggregates. We characterize these diverse modes of collective migration by quantifying the flows and forces that drive them, and we unveil the fundamental physical principles that govern these behaviors, which underscore the biological predisposition of living material to migrate, independent of length scale.
Adhesion to nanofibers drives cell membrane remodeling through one-dimensional wetting.
Arthur Charles-Orszag, Feng-Ching Tsai, Daria Bonazzi, Valeria Manriquez, Martin Sachse, Adeline Mallet, Audrey Salles, Keira Melican, Ralitza Staneva, Aurélie Bertin, Corinne Millien, Sylvie Goussard, Pierre Lafaye, Spencer Shorte, Matthieu Piel, Jacomi
Nature Communications - 4450 : - Adhesion to nanofibers drives cell membrane remodeling through one-dimensional wetting. - 2018
The shape of cellular membranes is highly regulated by a set of conserved mechanisms that can be manipulated by bacterial pathogens to infect cells. Remodeling of the plasma membrane of endothelial cells by the bacterium Neisseria meningitidis is thought to be essential during the blood phase of meningococcal infection, but the underlying mechanisms are unclear. Here we show that plasma membrane remodeling occurs independently of F-actin, along meningococcal type IV pili fibers, by a physical mechanism that we term ‘one-dimensional’ membrane wetting. We provide a theoretical model that describes the physical basis of one-dimensional wetting and show that this mechanism occurs in model membranes interacting with nanofibers, and in human cells interacting with extracellular matrix meshworks. We propose one-dimensional wetting as a new general principle driving the interaction of cells with their environment at the nanoscale that is diverted by meningococci during infection.
Size control in mammalian cells involves modulation of both growth rate and cell cycle duration.
Article | OPEN | Published: 16 August 2018 Size control in mammalian cells involves modulation of both growth rate and cell cycle duration Clotilde Cadart, Sylvain Monnier, Jacopo Grilli, Pablo J. Sáez, Nishit Srivastava, Rafaele Attia, Emmanuel Terriac
Nature Communications - 9 3275 - DOI : 10.1038/s41467-018-05393-0 - 2018
Despite decades of research, how mammalian cell size is controlled remains unclear because of the difficulty of directly measuring growth at the single-cell level. Here we report direct measurements of single-cell volumes over entire cell cycles on various mammalian cell lines and primary human cells. We find that, in a majority of cell types, the volume added across the cell cycle shows little or no correlation to cell birth size, a homeostatic behavior called “adder”. This behavior involves modulation of G1 or S-G2 duration and modulation of growth rate. The precise combination of these mechanisms depends on the cell type and the growth condition. We have developed a mathematical framework to compare size homeostasis in datasets ranging from bacteria to mammalian cells. This reveals that a near-adder behavior is the most common type of size control and highlights the importance of growth rate modulation to size control in mammalian cells.

400 publications.