Université PSL



Laboratory :
Author :
Revue :
Year :
Luca Canale, Axel Laborieux, Agasthya Aroul Mogane, Laetitia Jubin, Jean Comtet, Antoine Lainé, Lydéric Bocquet, Alessandro Siria, Antoine Niguès
Nature Physics - - DOI:10.1088/1361-6528/aacbad - 2018
Atomic Force Microscopy (AFM) allows to reconstruct the topography of surface with a resolution in the nanometer range. The exceptional resolution attainable with the AFM makes this instrument a key tool in nanoscience and technology. The core of the set-up relies on the detection of the mechanical properties of a micro-oscillator when approached to a sample to image. Despite the fact that AFM is nowadays a very common instrument for research and development applications, thanks to the exceptional performances and the relative simplicity to use it, the fabrication of the micrometric scale mechanical oscillator is still a very complicated and expensive task requiring a dedicated platform. Being able to perform atomic force microscopy with a macroscopic oscillator would make the instrument more versatile and accessible for an even larger spectrum of applications and audiences. We present for the first time atomic force imaging with a centimetric oscillator. We show how it is possible to perform topographical images with nanometric resolution with a grams tuning fork. The images presented here are obtained with an aluminum tuning fork of centimeter size as sensor on which an accelerometer is glued on one prong to measure the oscillation of the resonator. In addition to the stunning sensitivity, by imaging both in air and in liquid, we show the high versatility of such oscillator. The set up proposed here can be extended to numerous experiments where the probe needs to be heavy and/or very complex as well as the environment.
“Dripplon: localized and super fast ripples of water confined between graphene sheets
Hiroaki Yoshida, Vojtěch Kaiser, Benjamin Rotenberg & Lydéric Bocquet
Nature Communications - 1496 - DOI:10.1088/1361-6528/aacbad - 2018
Carbon materials have unveiled outstanding properties as membranes for water transport, both in 1D carbon nanotube and between 2D graphene layers. In the ultimate confinement, water properties however strongly deviate from the continuum, showing exotic properties with numerous counterparts in fields ranging from nanotribology to biology. Here, by means of molecular dynamics, we show a self-organized inhomogeneous structure of water confined between graphene sheets, whereby the very strong localization of water defeats the energy cost for bending the graphene sheets. This leads to a two-dimensional water droplet accompanied by localized graphene ripples, which we call “dripplon.” Additional osmotic effects originating in dissolved impurities are shown to further stabilize the dripplon. Our analysis also reveals a counterintuitive superfast dynamics of the dripplons, comparable to that of individual water molecules. They move like a (nano-) ruck in a rug, with water molecules and carbon atoms exchanging rapidly across the dripplon interface.
Dramatic pressure-sensitive ion conduction in conical nanopores
Laetitia Jubin, Anthony Poggioli, Alessandro Siria, and Lydéric Bocquet
Nature Communications - 115 (16) 4063-4068 - doi.org/10.1073/pnas.1721987115 - 2018
Ion transporters in Nature exhibit a wealth of complex transport properties such as voltage gating, activation, and mechanosensitive behavior. When combined, such processes result in advanced ionic machines achieving active ion transport, high selectivity, or signal processing. On the artificial side, there has been much recent progress in the design and study of transport in ionic channels, but mimicking the advanced functionalities of ion transporters remains as yet out of reach. A prerequisite is the development of ionic responses sensitive to external stimuli. In the present work, we report a counterintuitive and highly nonlinear coupling between electric and pressure-driven transport in a conical nanopore, manifesting as a strong pressure dependence of the ionic conductance. This result is at odds with standard linear response theory and is akin to a mechanical transistor functionality. We fully rationalize this behavior on the basis of the coupled electrohydrodynamics in the conical pore by extending the Poisson–Nernst–Planck–Stokes framework. The model is shown to capture the subtle mechanical balance occurring within an extended spatially charged zone in the nanopore. The pronounced sensitivity to mechanical forcing offers leads in tuning ion transport by mechanical stimuli. The results presented here provide a promising avenue for the design of tailored membrane functionalities.
“Cross-over of the power law exponent for carbon nanotube conductivity as a function of salinity
Yuki Uematsu, Roland R. Netz, Lydéric Bocquet
J Phys Chem C - 122, 11 2992-2997 - doi.org/10.1021/acs.jpcb.8b01975 - 2018
IOn the basis of the Poisson–Boltzmann equation in cylindrical coordinates, we calculate the conductivity of a single charged nanotube filled with electrolyte. The conductivity as a function of the salt concentration follows a power-law, the exponent of which has been controversially discussed in the literature. We use the co-ion-exclusion approximation and obtain the crossover between different asymptotic power-law behaviors analytically. Numerically solving the full Poisson–Boltzmann equation, we also calculate the complete diagram of exponents as a function of the salt concentration and the pH for tubes with different radii and pKa values. We apply our theory to recent experimental results on carbon nanotubes using the pKa as a fit parameter. In good agreement with the experimental data, the theory shows power-law behavior with the exponents 1/3 at high pH and 1/2 at low pH, with a crossover depending on salt concentration, tube radius and pKa.
Shear thinning in non-Brownian suspensions
Guillaume Chatté, Jean Comtet, Antoine Niguès, Lydéric Bocquet, Alessandro Siria, Guylaine Ducouret, François Lequeux, Nicolas Lenoir, Guillaume Ovarleze and Annie Colin
Soft Matter - 14 879-893 - doi: 10.1039/c7sm01963g - 2018
We study the flow of suspensions of non-Brownian particles dispersed into a Newtonian solvent. Combining capillary rheometry and conventional rheometry, we evidence a succession of two shear thinning regimes separated by a shear thickening one. Through X-ray radiography measurements, we show that during each of those regimes, the flow remains homogeneous and does not involve particle migration. Using a quartz-tuning fork based atomic force microscope, we measure the repulsive force profile and the microscopic friction coefficient μ between two particles immersed into the solvent, as a function of normal load. Coupling measurements from those three techniques, we propose that (1) the first shear-thinning regime at low shear rates occurs for a lubricated rheology and can be interpreted as a decrease of the effective volume fraction under increasing particle pressures, due to short-ranged repulsive forces and (2) the second shear thinning regime after the shear-thickening transition occurs for a frictional rheology and can be interpreted as stemming from a decrease of the microscopic friction coefficient at large normal load.
Active sieving across driven nanopores for tunable selectivity
Sophie Marbach and Lydéric Bocqueta)
J Phys Chem C - 147 15 - doi.org/10.1063/1.4997993 - 2018
Molecular separation traditionally relies on sieving processes across passive nanoporous membranes. Here we explore theoretically the concept of non-equilibrium active sieving. We investigate a simple model for an active noisy nanopore, where gating—in terms of size or charge—is externally driven at a tunable frequency. Our analytical and numerical results unveil a rich sieving diagram in terms of the forced gating frequency. Unexpectedly, the separation ability is strongly increased as compared to its passive (zero frequency) counterpart. It also points to the possibility of tuning dynamically the osmotic pressure. Active separation outperforms passive sieving and represents a promising avenue for advanced filtration.
Flow and fracture near the sol–gel transition of silica nanoparticle suspensions
Gustavo E. Gimenes a and Elisabeth Bouchaudbc
Soft Matter - 14 8036-8043 - DOI:10.1039/C8SM01247D - 2018
We analyze the evolution of the mechanical response of a colloidal suspension to an external tensile stress, from fracture to flow, as a function of the distance from the sol–gel transition. We cease to observe cracks at a finite distance from the transition. In an intermediate region where the phenomenon is clearly hysteretic, we observe the coexistence of both flow and fracture. Even when cracks are observed, the material in fact flows over a distance that increases in the vicinity of the transition.
Microfluidic actuators based on temperature-responsive hydrogels
Loïc D'Eramo, Benjamin Chollet, Marie Leman, Ekkachai Martwong, Mengxing Li, Hubert Geisler, Jules Dupire, Margaux Kerdraon, Clémence Vergne, Fabrice Monti, Yvette Tran & Patrick Tabeling
Microsystems & Nanoengineering - 4 17069 - doi.org/10.1038/micronano.2017.69 - 2018
The concept of using stimuli-responsive hydrogels to actuate fluids in microfluidic devices is particularly attractive, but limitations, in terms of spatial resolution, speed, reliability and integration, have hindered its development during the past two decades. By patterning and grafting poly(N-isopropylacrylamide) PNIPAM hydrogel films on plane substrates with a 2 μm horizontal resolution and closing the system afterward, we have succeeded in unblocking bottlenecks that thermo-sensitive hydrogel technology has been challenged with until now. In this paper, we demonstrate, for the first time with this technology, devices with up to 7800 actuated micro-cages that sequester and release solutes, along with valves actuated individually with closing and opening switching times of 0.6±0.1 and 0.25±0.15 s, respectively. Two applications of this technology are illustrated in the domain of single cell handling and the nuclear acid amplification test (NAAT) for the Human Synaptojanin 1 gene, which is suspected to be involved in several neurodegenerative diseases such as Parkinson’s disease. The performance of the temperature-responsive hydrogels we demonstrate here suggests that in association with their moderate costs, hydrogels may represent an alternative to the actuation or handling techniques currently used in microfluidics, that are, pressure actuated polydimethylsiloxane (PDMS) valves and droplets.
Electrostrictive polymer composites based on liquid crystalline graphene for mechanical energy harvesting
Jinkai Yuan, Wilfrid Neri, Cécile Zakri, Philippe Poulin, Annie Colin
Multifunctional Materials - 43922 - - 2018
High electromechanical coupling is critical to perform effective conversion between mechanical and electrical energy for various applications of electrostrictive polymers. Herein, a giant electrostriction effect is reported in liquid crystalline graphene doped dielectric elastomers. The materials are formulated by an original phase transfer method which allows the solubilization of graphenic monolayers in non-polar solvents. Dielectric spectroscopy is combined with tensile test devices to measure the true electrostriction coefficients with differentiating the Maxwell stress effect. Because of their unique liquid crystal structure, the resultant composites show a giant relative permittivity and ultralarge electrostriction coefficient. This work offers a promising pathway to design novel high performance electrostrictive polymer composites as well as to provide insights into mechanisms of true electrostriction in electrically …
Microporous electrostrictive materials for vibrational energy harvesting
Mickaël Pruvost, Wilbert J Smit, Cécile Monteux, Philippe Poulin, Annie Colin
Multifunctional Materials - 1 15004 - - 2018
We present electrostrictive materials with excellent properties for vibrational energy harvesting applications. The developed materials consist of a porous carbon black composite, which is processed using water-in-oil emulsions. In combination with an insulating layer, the investigated structures exhibit a high effective relative dielectric permittivity (up to 182 at 100 Hz) with very low effective conductivity (down to 2.53 10− 8 S m− 1). They can generate electrical energy in response to mechanical vibrations with a power density of 0.38 W m− 3 under an applied bias electric field of 32 V. They display figures or merit for energy harvesting applications well above reference polymer materials in the field, including fluorinated co-and ter-polymers synthetized by heavy chemical processes. The production process of the present materials is based on non hazardous and low-cost chemicals. The soft dielectric materials are …

410 publications.