Université PSL



Laboratory :
Author :
Revue :
Year :
Physics and technological aspects of nanofluidics
Lydéric Bocquet et Patrick Tabeling
Lab. Chip - 14 3143–3158 - DOI: 10.1039/c4lc00325j - 2014
From a physical perspective, nanofluidics represents an extremely rich domain. It hosts many mechanisms acting on the nanoscale, which combine together or interact with the confinement to generate new phenomena. Superfast flows in carbon nanotubes, nonlinear electrokinetic transport, slippage over smooth surfaces, nanobubble stability, etc. are the most striking phenomena that have been unveiled over the past few years, and some of them are still awaiting an explanation. One may anticipate that new nanofluidic effects will be discovered in the future, but at the moment, the technological barrier is high. Fabrication of nanochannels is most often a tour de force, slow and costly. However, with the accumulation of technological skills along with the use of new nanofluidic materials (like nanotubes), nanofluidics is becoming increasingly accessible to experimentalists. Among the technological challenges faced by the field, fabricating devices mimicking natural nanometric systems, such as aquaporins, ionic pumps or kidney osmotic filtering, seems the most demanding in terms of groundbreaking ideas. Nanoflow characterization remains delicate, although considerable progress has been achieved over the past years. The targeted application of nanofluidics is not only in the field of genomics and membrane science - with disruptive developments to be expected for water purification, desalination, and energy harvesting - but also for oil and gas production from unconventional reservoirs. Today, in view of the markets that are targeted, nanofluidics may well impact the industry more than microfluidics; this would represent an unexpected paradox. These successes rely on using a variety of materials and technologies, using state-of-the-art nanofabrication, or low-tech inexpensive approaches. As a whole, nanofluidics is a fascinating field that is facing considerable challenges today. It possesses a formidable potential and offers much space for creative groundbreaking ideas.
ESCRT Machinery Is Required for Plasma Membrane Repair
Ana Joaquina Jimenez, Paolo Maiuri, Julie Lafaurie-Janvore, Séverine Divoux, Matthieu Piel and Franck Perez
Science - Vol.343(n°6174) 1247136 - DOI: 10.1126/science.1247136 - 2014
Plasma membrane damage can be triggered by numerous phenomena, and efficient repair is essential for cell survival. Endocytosis, membrane patching, or extracellular budding can be used for plasma membrane repair. We found that endosomal sorting complex required for transport (ESCRT), involved previously in membrane budding and fission, plays a critical role in plasma membrane repair. ESCRT proteins were recruited within seconds to plasma membrane wounds. Quantitative analysis of wound closure kinetics coupled to mathematical modeling suggested that ESCRTs are involved in the repair of small wounds. Real-time imaging and correlative scanning electron microscopy (SEM) identified extracellular buds and shedding at the site of ESCRT recruitment. Thus, the repair of certain wounds is ensured by ESCRT-mediated extracellular shedding of wounded portions.
Exploring the function of cell shape and size during mitosis
Clotilde Cadart, Ewa Zlotek-Zlotkiewicz, Maël Le Berre, Matthieu Piel and Helen K. Matthews
Dev Cell - Vol.29(2) 159–169 - DOI: http://dx.doi.org/10.1016/j.devcel.2014.04.009 - 2014
Dividing cells almost always adopt a spherical shape. This is true of most eukaryotic cells lacking a rigid cell wall and is observed in tissue culture and single-celled organisms, as well as in cells dividing inside tissues. While the mechanisms underlying this shape change are now well described, the functional importance of the spherical mitotic cell for the success of cell division has been thus far scarcely addressed. Here we discuss how mitotic rounding contributes to spindle assembly and positioning, as well as the potential consequences of abnormal mitotic cell shape and size on chromosome segregation, tissue growth, and cancer.
ESCRT-III assembly and cytokinetic abscission are induced by tension release in the intercellular bridge
Julie Lafaurie-Janvore, Paolo Maiuri, Irène Wang, Mathieu Pinot, Jean-Baptiste Manneville, Timo Betz, Martial Balland and Matthieu Piel
Science - Vol.339 (n°6127) 1625-1629 - DOI: 10.1126/science.1233866 - 2014
The last step of cell division, cytokinesis, produces two daughter cells that remain connected by an intercellular bridge. This state often represents the longest stage of the division process. Severing the bridge (abscission) requires a well-described series of molecular events, but the trigger for abscission remains unknown. We found that pulling forces exerted by daughter cells on the intercellular bridge appear to regulate abscission. Counterintuitively, these forces prolonged connection, whereas a release of tension induced abscission. Tension release triggered the assembly of ESCRT-III (endosomal sorting complex required for transport–III), which was followed by membrane fission. This mechanism may allow daughter cells to remain connected until they have settled in their final locations, a process potentially important for tissue organization and morphogenesis.
Photosensitive Polyamines for High-Performance Photocontrol of DNA Higher-Order Structure Venancio-Marques
Venancio-Marques, Anna, Bergen Anna, Rossi-Gendron Caroline, Rudiuk Sergii, and Baigl Damien
American Chemical Society Nano (ACS Nano) - Volume 8 (4) 3654–3663 - DOI: 10.1021/nn500266b - 2014
Polyamines are small, ubiquitous, positively charged molecules that play an essential role in numerous biological processes such as DNA packaging, gene regulation, neuron activity, and cell proliferation. Here, we synthesize the first series of photosensitive polyamines (PPAs) and demonstrate their ability to photoreversibly control nanoscale DNA higher-order structure with high efficiency. We show with fluorescence microscopy imaging that the efficiency of the PPAs as DNA-compacting agents is directly correlated to their molecular charge. Micromolar concentration of the most efficient molecule described here, a PPA containing three charges at neutral pH, compacts DNA molecules from a few kilobase pairs to a few hundred kilobase pairs, while subsequent 3 min UV illuminations at 365 nm triggers complete unfolding of DNA molecules. Additional application of blue light (440 nm for 3 min) induces the refolding of DNA into the compact state. Atomic force microscopy reveals that the compaction involves a global folding of the whole DNA molecule, whereas UV-induced unfolding is a modification initiated from the periphery of the compacted DNA, resulting in the occurrence of intermediate flower-like structures prior to the fully unfolded state.

Keywords: polyamines; DNA compaction; photocontrol; DNA; AFM; light
RecG and UvsW catalyse robust DNA rewinding critical for stalled DNA replication fork rescue
Maria Manosas, Senthil K. Perumal, Piero R. Bianco, Felix Ritort, Stephen J. Benkovic and Vincent Croquette
Nature Communications - -4 2368 - DOI: 10.1038/ncomms3368 - 2013
Helicases that both unwind and rewind DNA have central roles in DNA repair and genetic recombination. In contrast to unwinding, DNA rewinding by helicases has proved difficult to characterize biochemically because of its thermodynamically downhill nature. Here we use single-molecule assays to mechanically destabilize a DNA molecule and follow, in real time, unwinding and rewinding by two DNA repair helicases, bacteriophage T4 UvsW and Escherichia coli RecG. We find that both enzymes are robust rewinding enzymes, which can work against opposing forces as large as 35 pN, revealing their active character. The generation of work during the rewinding reaction allows them to couple rewinding to DNA unwinding and/or protein displacement reactions central to the rescue of stalled DNA replication forks. The overall results support a general mechanism for monomeric rewinding enzymes.
Cell–cell contacts confine public goods diffusion inside Pseudomonas aeruginosa clonal microcolonies
Thomas Julou, Thierry Mora, Laurent Guillon, Vincent Croquette, Isabelle J. Schal, David Bensimon, and Nicolas Desprat
Proc. Nat. Acad. Sci. USA - vol.110 (n°31) 12577–82 - DOI: 10.1073/pnas.1301428110 - 2013
he maintenance of cooperation in populations where public goods are equally accessible to all but inflict a fitness cost on individual producers is a long-standing puzzle of evolutionary biology. An example of such a scenario is the secretion of siderophores by bacteria into their environment to fetch soluble iron. In a planktonic culture, these molecules diffuse rapidly, such that the same concentration is experienced by all bacteria. However, on solid substrates, bacteria form dense and packed colonies that may alter the diffusion dynamics through cell–cell contact interactions. In Pseudomonas aeruginosa microcolonies growing on solid substrate, we found that the concentration of pyoverdine, a secreted iron chelator, is heterogeneous, with a maximum at the center of the colony. We quantitatively explain the formation of this gradient by local exchange between contacting cells rather than by global diffusion of pyoverdine. In addition, we show that this local trafficking modulates the growth rate of individual cells. Taken together, these data provide a physical basis that explains the stability of public goods production in packed colonies.
New Glycosidase Substrates for Droplet-Based Microfluidic Screening
Majdi Najah, Estelle Mayot, Putu Mahendra-Wijaya, Andrew D. Griffiths, Sylvain Ladame, and Antoine Drevelle
Anal. Chem. - 85 (20) 9807–14 - DOI: 10.1021/ac4022709 - 2013
Droplet-based microfluidics is a powerful technique allowing ultra-high-throughput screening of large libraries of enzymes or microorganisms for the selection of the most efficient variants. Most applications in droplet microfluidic screening systems use fluorogenic substrates to measure enzymatic activities with fluorescence readout. It is important, however, that there is little or no fluorophore exchange between droplets, a condition not met with most commonly employed substrates. Here we report the synthesis of fluorogenic substrates for glycosidases based on a sulfonated 7-hydroxycoumarin scaffold. We found that the presence of the sulfonate group effectively prevents leakage of the coumarin from droplets, no exchange of the sulfonated coumarins being detected over 24 h at 30 °C. The fluorescence properties of these substrates were characterized over a wide pH range, and their specificity was studied on a panel of relevant glycosidases (cellulases and xylanases) in microtiter plates. Finally, the β-d-cellobioside-6,8-difluoro-7-hydroxycoumarin-4-methanesulfonate substrate was used to assay cellobiohydrolase activity on model bacterial strains (Escherichia coli and Bacillus subtilis) in a droplet-based microfluidic format. These new substrates can be used to assay glycosidase activities in a wide pH range (4–11) and with incubation times of up to 24 h in droplet-based microfluidic systems.
Droplet-based microfluidic platform for ultra-high-throughput bioprospecting of cellulolytic microorganisms
Najah M, Calbrix R, Mahendra-Wijaya IP, Beneyton T, Griffiths A.D and Drevelle A
Chem. Biol. - 21(12) 1722-32 - DOI: 10.1016/j.chembiol.2014.10.020. - 2013
Discovery of microorganisms producing enzymes that can efficiently hydrolyze cellulosic biomass is of great importance for biofuel production. To date, however, only a miniscule fraction of natural biodiversity has been tested because of the relatively low throughput of screening systems and their limitation to screening only culturable microorganisms. Here, we describe an ultra-high-throughput droplet-based microfluidic system that allowed the screening of over 100,000 cells in less than 20 min. Uncultured bacteria from a wheat stubble field were screened directly by compartmentalization of single bacteria in 20 pl droplets containing a fluorogenic cellobiohydrolase substrate. Sorting of droplets based on cellobiohydrolase activity resulted in a bacterial population with 17- and 7-fold higher cellobiohydrolase and endogluconase activity, respectively, and very different taxonomic diversity than when selected for growth on medium containing starch and carboxymethylcellulose as carbon source.
Abnormal recruitment of extracellular matrix proteins by excess Notch3ECD: a new pathomechanism in CADASIL
Monet-Leprêtre M, Haddad I, Baron-Menguy C, Fouillot-Panchal M, Riani M, Domenga-Denier V, Dussaule C, Cognat E, Vinh J and Joutel A
Brain Oxford - (Pt 6) 1830-45 - DOI: 10.1093/brain/awt092 - 2013
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, or CADASIL, one of the most common inherited small vessel diseases of the brain, is characterized by a progressive loss of vascular smooth muscle cells and extracellular matrix accumulation. The disease is caused by highly stereotyped mutations within the extracellular domain of the NOTCH3 receptor (Notch3(ECD)) that result in an odd number of cysteine residues. While CADASIL-associated NOTCH3 mutations differentially affect NOTCH3 receptor function and activity, they all are associated with early accumulation of Notch3(ECD)-containing aggregates in small vessels. We still lack mechanistic explanation to link NOTCH3 mutations with small vessel pathology. Herein, we hypothesized that excess Notch3(ECD) could recruit and sequester functionally important proteins within small vessels of the brain. We performed biochemical, nano-liquid chromatography-tandem mass spectrometry and immunohistochemical analyses, using cerebral and arterial tissue derived from patients with CADASIL and mouse models of CADASIL that exhibit vascular lesions in the end- and early-stage of the disease, respectively. Biochemical fractionation of brain and artery samples demonstrated that mutant Notch3(ECD) accumulates in disulphide cross-linked detergent-insoluble aggregates in mice and patients with CADASIL. Further proteomic and immunohistochemical analyses identified two functionally important extracellular matrix proteins, tissue inhibitor of metalloproteinases 3 (TIMP3) and vitronectin (VTN) that are sequestered into Notch3(ECD)-containing aggregates. Using cultured cells, we show that increased levels or aggregation of Notch3 enhances the formation of Notch3(ECD)-TIMP3 complex, promoting TIMP3 recruitment and accumulation. In turn, TIMP3 promotes complex formation including NOTCH3 and VTN. In vivo, brain vessels from mice and patients with CADASIL exhibit elevated levels of both insoluble cross-linked and soluble TIMP3 species. Moreover, reverse zymography assays show a significant elevation of TIMP3 activity in the brain vessels from mice and patients with CADASIL. Collectively, our findings lend support to a Notch3(ECD) cascade hypothesis in CADASIL disease pathology, which posits that aggregation/accumulation of Notch3(ECD) in the brain vessels is a central event, promoting the abnormal recruitment of functionally important extracellular matrix proteins that may ultimately cause multifactorial toxicity. Specifically, our results suggest a dysregulation of TIMP3 activity, which could contribute to mutant Notch3(ECD) toxicity by impairing extracellular matrix homeostasis in small vessels.

325 publications.