Publications

SEARCH

Laboratory :
Author :
Revue :
Year :

Supershear Rayleigh Waves at a Soft Interface
Anne Le Goff, Pablo Cobelli, and Guillaume Lagubeau
Phys. Rev. Lett. - Vol.110 236101 - DOI: http://dx.doi.org/10.1103/PhysRevLett.110.236101 - 2013
We report on the experimental observation of waves at a liquid foam surface propagating faster than the bulk shear waves. The existence of such waves has long been debated, but the recent observation of supershear events in a geophysical context has inspired us to search for their existence in a model viscoelastic system. An optimized fast profilometry technique allows us to observe on a liquid foam surface the waves triggered by the impact of a projectile. At high impact velocity, we show that the expected subshear Rayleigh waves are accompanied by faster surface waves that can be identified as supershear Rayleigh waves.
Foam Drainage Control Using Thermocapillary Stress in a Two-Dimensional Microchamber
V. Miralles, B. Selva, I. Cantat, and M.-C. Jullien
Phys. Rev. Lett. - Vol.112(23) 238302 - DOI: 10.1103/PhysRevLett.112.238302 - 2013
We investigate the drainage of a 2D microfoam in a vertical Hele-Shaw cell, and show that the Marangoni stress at the air-water interface generated by a constant temperature gradient applied in situ can be tuned to control the drainage. The temperature gradient is applied in such a way that thermocapillarity and gravity have an antagonistic effect. We characterize the drainage over time by measuring the liquid volume fraction in the cell and find that thermocapillarity can overcome the effect of gravity, effectively draining the foam towards the top of the cell, or exactly compensate it, maintaining the liquid fraction at its initial value over at least 60 s. We quantify these results by solving the mass balance in the cell, and provide insight into the interplay between gravity, thermocapillarity, and capillary pressure governing the drainage dynamics.
Obstructed breakup of slender drops in a microfluidic T-junction
A.M. Leshansky, S. Afkhami, M.C Jullien, P. Tabeling
Phys. Rev. Lett. - 108(26) :4502 - DOI:10.1103/PhysRevLett.108.264502 - 2012
In this Letter we present a theoretical analysis of the droplet breakup with “permanent obstruction” in a microfluidic T junction [M.-C. Jullien et al., Phys. Fluids 21 072001 (2009)]. The proposed theory is based on a simple geometric construction for the interface shape combined with Tanner’s law for the local contact angle. The resulting scaling of the droplet deformation with time and capillary number is in excellent agreement with the results of direct numerical simulations and prior experiments. More rigorous analysis based on the lubrication approximation reveals a self-similar behavior analogous to the classical problem of a droplet spreading over a preexisting liquid film.
Analysis of gene expression at a single cell level in microdroplets
P. Mary, L. Dauphinot, N. Bois, M.C Potier, V. Studer, P. Tabeling
Biomicrofluidics - 5(2) :24109 - DOI:10.1063/1.3596394 - 2011
In the present work, we have measured the messenger RNA expression of specific genes both from total RNA and cells encapsulated in droplets. The microfluidic chip introduced includes the following functionalities: RNA/cell encapsulation, lysis, reverse transcription and real-time polymerase chain reaction. We have shown that simplex and duplex gene expression measurements can be carried out over a population of 100 purified RNA samples encapsulated simultaneously in 2 nl droplets in less than 2 h. An analysis of 100 samples containing one to three cells has shown excellent consistency with standard techniques regarding average values. The cell-to-cell distributions of the E-cadherin expression suggest fluctuations on the order of 80% in the number of transcripts, which is highly consistent with the general findings from the literature. A mathematical model has also been introduced to strengthen the interpretation of our results. The present work paves the way for the systematic acquisition of such information in biological and biomedical studies.
Ultrasound Internal Tattooing
O. Couture, M. Faivre, N. Pannacci, A. Babataheri, V. Servois, P. Tabeling, M. Tanter
Med. Phys - 38(2) :1116-23 - PMID:21452748 - 2011
PURPOSE:
The ability of remotely tagging tissues in a controlled and three-dimensional manner during preoperative imaging could greatly help surgeons to identify targets for resection. The authors' objective is to selectively and noninvasively deposit markers under image guidance for such internal tattooing.
METHODS:
This study describes the production of new ultrasound-inducible droplets carrying large payloads of fluorescent markers and the in vivo proof of concept of their remote and controlled deposition via focused ultrasound. The droplets are monodispersed multiple emulsions produced in a microfluidic system, consisting of aqueous fluorescein in perfluorocarbon in water. Their conversion (either by vaporization or cavitation) is performed remotely using a clinical ultrasonic imaging probe.
RESULTS:
When submitted to 5 MHz imaging pulses, the droplets vaporize in vitro at 1.4 MPa peak-negative pressure and eject their content. After several seconds, a brightly fluorescent spot (0.5 mm diameter) is observed at the focus of the transducer. Experiments in the chorioallantoique membrane of chicken eggs and chicken embryo demonstrate that the spot is stable and is easily seen by naked eye.
CONCLUSIONS:
These ultrasound-inducible multiple emulsions could be used to deliver large amounts of contrast agents, chemotherapy, and genetic materials in vivo using a conventional ultrasound scanner.

TO THE IPGG TEAMS:

- For any publication having received the support of the IPGG (presence in the IPGG premises, use of the IPGG technological platform, collaboration between IPGG teams, linked to an IPGG doctoral or postdoctoral grant, or use of the common spaces), you must indicate the following sentence : "This work has received the support of "Institut Pierre-Gilles de Gennes" (laboratoire d'excellence, "Investissements d'avenir" program ANR-10-IDEX-0001-02 PSL and ANR-10-LABX-31.) ".

- For any publication of results obtained through the use of equipment purchased by the Equipex IPGG, you must add the following coding: "ANR-10-EQPX-34".

65 publications.