Laboratory :
Author :
Revue :
Year :

3D deterministic lateral displacement (3D-DLD) cartridge system for high throughput particle sorting
P Jusková, L Matthys, JL Viovy, L Malaquin
Chem. Comm. - 56 (38) 5190-5193 - - 2020
Cancer-associated fibroblast heterogeneity in axillary lymph nodes drives metastases in breast cancer through complementary mechanisms
F Pelon, BBourachot, Y Kieffer, I Magagna, F Mermet-Meillon, I Bonnet, A Costa, AM Givel, Y Attieh, J Barbazan, C Bonneau, L Fuhrmann, S Descroix, D Vignjevic, P SIlberzan, MC Parrini, A Vincent-Salomon, F Mechta-Gregoriou
Nat Commun - - - 2020
Sliding walls: a new paradigm for fluidic actuation and protocol implementation in microfluidics
Venzac, Bastien; Liu, Yang; Ferrante, Ivan; Vargas, Pablo; Yamada, Ayako; Courson, Rémi; Verhulsel, Marine; Malaquin, Laurent; Viovy, Jean-Louis; Descroix, Stéphanie
Microsystems & Nanoengineering - 6(1) 18 - DOI: 10.1038/s41378-019-0125-7 - 2020
Currently, fluidic control in microdevices is mainly achieved either by external pumps and valves, which are expensive and bulky, or by valves integrated in the chip. Numerous types of internal valves or actuation methods have been proposed, but they generally impose difficult compromises between performance and fabrication complexity. We propose here a new paradigm for actuation in microfluidic devices based on rigid or semi-rigid walls with transversal dimensions of hundreds of micrometres that are able to slide within a microfluidic chip and to intersect microchannels with hand-driven or translation stage-based actuation. With this new concept for reconfigurable microfluidics, the implementation of a wide range of functionalities was facilitated and allowed for no or limited dead volume, low cost and low footprint. We demonstrate here several fluidic operations, including on/off or switch valving, where channels are blocked or reconfigured depending on the sliding wall geometry. The valves sustain pressures up to 30 kPa. Pumping and reversible compartmentalisation of large microfluidic chambers were also demonstrated. This last possibility was applied to a "4D" migration assay of dendritic cells in a collagen gel. Finally, sliding walls containing a hydrogel-based membrane were developed and used to concentrate, purify and transport biomolecules from one channel to another, such functionality involving complex fluidic transport patterns not possible in earlier microfluidic devices. Overall, this toolbox is compatible with "soft lithography" technology, allowing easy implementation within usual fabrication workflows for polydimethylsiloxane chips. This new technology opens the route to a variety of microfluidic applications, with a focus on simple, hand-driven devices for point-of-care or biological laboratories with low or limited equipment and resources.
In vitro bone metastasis dwelling in a 3D bioengineered niche.
Han W, El Botty R, Montaudon E, Malaquin L, Deschaseaux F, Espagnolle N, Marangoni E, Cottu P, Zalcman G, Parrini MC, Assayag F, Sensebe L, Silberzan P, Vincent-Salomon A, Dutertre G, Roman-Roman S, Descroix S, Camonis J
Biomaterials - 269 120624 - DOI: 10.1016/j.biomaterials.2020.120624 - 2020
Bone is the most frequent metastasis site for breast cancer. As well as dramatically increasing disease burden, bone metastases are also an indicator of poor prognosis. One of the main challenges in investigating bone metastasis in breast cancer is engineering in vitro models that replicate the features of in vivo bone environments. Such in vitro models ideally enable the biology of the metastatic cells to mimic their in vivo behavior as closely as possible. Here, taking benefit of cutting-edge technologies both in microfabrication and cancer cell biology, we have developed an in vitro breast cancer bone-metastasis model. To do so we first 3D printed a bone scaffold that reproduces the trabecular architecture and that can be conditioned with osteoblast-like cells, a collagen matrix, and mineralized calcium. We thus demonstrated that this device offers an adequate soil to seed primary breast cancer bone metastatic cells. In particular, patient-derived xenografts being considered as a better approach than cell lines to achieve clinically relevant results, we demonstrate the ability of this biomimetic bone niche model to host patient-derived xenografted metastatic breast cancer cells. These patient-derived xenograft cells show a long-term survival in the bone model and maintain their cycling propensity, and exhibit the same modulated drug response as in vivo. This experimental system enables access to the idiosyncratic features of the bone microenvironment and cancer bone metastasis, which has implications for drug testing.
Integration of a soft dielectric composite into a cantilever beam for mechanical energy harvesting, comparison between capacitive and triboelectric transducers
Mickaël Pruvost, Wilbert J. Smit, Cécile Monteux, Pablo Del Corro, Isabelle Dufour, Cédric Ayela, Philippe Poulin & Annie Colin
Scientific Reports - 10 20681 - - 2020
Flexible dielectrics that harvest mechanical energy via electrostatic effects are excellent candidates as power sources for wearable electronics or autonomous sensors. The integration of a soft dielectric composite (polydimethylsiloxane PDMS-carbon black CB) into two mechanical energy harvesters is here presented. Both are based on a similar cantilever beam but work on different harvesting principles: variable capacitor and triboelectricity. We show that without an external bias the triboelectric beam harvests a net density power of 0.3 μW/cm2 under a sinusoidal acceleration of 3.9g at 40 Hz. In a variable capacitor configuration, a bias of 0.15 V/μm is required to get the same energy harvesting performance under the same working conditions. As variable capacitors’ harvesting performance are quadratically dependent on the applied bias, increasing the bias allows the system to harvest energy much more efficiently than the triboelectric one. The present results make CB/PDMS composites promising for autonomous portable multifunctional systems and intelligent sensors.
Emulsion Destabilization by Squeeze Flow
Riande I Dekker, Antoine Deblais, Krassimir P Velikov , Peter Veenstra , Annie Colin , Hamid Kellay , Willem K Kegel , Daniel Bonn
Langmuir - 36(27) 7795-7800 - doi: 10.1021/acs.langmuir.0c00759 - 2020
There is a large debate on the destabilization mechanism of emulsions. We present a simple technique using mechanical compression to destabilize oil-in-water emulsions. Upon compression of the emulsion, the continuous aqueous phase is squeezed out, while the dispersed oil phase progressively deforms from circular to honeycomb-like shapes. The films that separate the oil droplets are observed to thin and break at a critical oil/water ratio, leading to coalescence events. Electrostatic interactions and local droplet rearrangements do not determine film rupture. Instead, the destabilization occurs like an avalanche propagating through the system, starting at areas where the film thickness is smallest.
Density waves in shear-thickening suspensions
Guillaume Ovarlez, Anh Vu Nguyen Le2, Wilbert J. Smit2, Abdoulaye Fall
Science Advances - 6 16 - DOI: 10.1126/sciadv.aay5589 - 2020
Shear thickening corresponds to an increase of the viscosity as a function of the shear rate. It is observed in many concentrated suspensions in nature and industry: water or oil saturated sediments, crystal-bearing magma, fresh concrete, silica suspensions, and cornstarch mixtures. Here, we reveal how shear-thickening suspensions flow, shedding light onto as yet non-understood complex dynamics reported in the literature. When shear thickening is important, we show the existence of density fluctuations that appear as periodic waves moving in the direction of flow and breaking azimuthal symmetry. They come with strong normal stress fluctuations of the same periodicity. The flow includes small areas of normal stresses of the order of tens of kilopascals and areas of normal stresses of the order of hundreds of pascals. These stress inhomogeneities could play an important role in the damage caused by thickening fluids in the industry.
Shear thickening in dense non-Brownian suspensions: Viscous to inertial transition
Y. Madraki, A. Oakley, A. Nguyen Le, A. Colin, G. Ovarlez, and S. Hormozi
Journal of Rheology - 64 27 - - 2020
We present an experimental study on the viscous to inertial mode of shear thickening in dense non-Brownian suspensions. We design a model suspension consisting of monosized spherical particles within a Newtonian suspending fluid. We develop a protocol for the rheological characterization of dense suspensions using the conventional rheometry technique. Our results provide constitutive laws for suspensions with solid volume fractions close to jamming when both viscous and inertial effects at the particle scale are present. We perform atomic force microscopy to measure forces between the particles immersed in the suspending fluid and show that our system of study corresponds to the frictionless regime of dense suspensions in which viscous and collisional forces dissipate the energy. Finally, we show that the proposed empirical constitutive laws, when approaching jamming, predict the dynamics of dense suspensions in a transient boundary driven flow.
Impact of the Wetting Length on Flexible Blade Spreading
Marion Krapez, Anaïs Gauthier, Hamid Kellay, Jean-Baptiste Boitte, Odile Aubrun, Jean-François Joanny, and Annie Colin
Phys. Rev. Lett. - 125 254506 - DOI: - 2020
We study the spreading of a Newtonian fluid by a deformable blade, a common industrial problem, characteristic of elastohydrodynamic situations. Here, we consider the case of a finite reservoir of liquid, emptying as the liquid is spread. We evidence the role of a central variable: the wetting length , which sets a boundary between the wet and dry parts of the blade. We show that the deposited film thickness
depends quadratically with. We study this problem experimentally and numerically by integration of the elastohydrodynamic equations, and finally propose a scaling law model to explain how influences the spreading dynamics.
A new pressure sensor array for local normal stress measurement in complex fluids
Gauthier Anaïs, Mickael Pruvost, Gamache Olivier, Annie Colin
Journal of Rheology - 65 583 - - 2020
A new pressure sensor array, positioned on the bottom plate of a standard torsional rheometer is presented. It is built from a unique piezo-capacitive polymeric foam, and consists of twenty-five capacitive pressure sensors (of surface 4.5$\times$4.5 mm$^2$ each) built together in a 5$\times$5 regular array. The sensor array is used to obtain a local mapping of the normal stresses in complex fluids, which dramatically extends the capability of the rheometer. We demonstrate this with three examples. First, the pressure profile is reconstructed in a polymer solution, which enable the simultaneous measurement of the first and the second normal stress differences $N_1$ and $N_2$, with a precision of 2 Pa. In a second part, we show that negative normal stresses can also be detected. Finally, we focus on the normal stress fluctuations that extend both spatially and temporally ina shear-thickening suspension of cornstarch particles. We evidence the presence of local a unique heterogeneity rotating very regularly. In addition to their low-cost and high versatility, the sensors show here their potential to finely characterize the normal stresses in viscosimetric flows


- For any publication having received the support of the IPGG (presence in the IPGG premises, use of the IPGG technological platform, collaboration between IPGG teams, linked to an IPGG doctoral or postdoctoral grant, or use of the common spaces), you must indicate the following sentence : "This work has received the support of "Institut Pierre-Gilles de Gennes" (laboratoire d'excellence, "Investissements d'avenir" program ANR-10-IDEX-0001-02 PSL and ANR-10-LABX-31.) ".

- For any publication of results obtained through the use of equipment purchased by the Equipex IPGG, you must add the following coding: "ANR-10-EQPX-34".

579 publications.