Publications

SEARCH

Laboratory :
Author :
Revue :
Year :

Reversible microfluidics device for precious metal electrodeposition and depletion yield studies
Jérémie Gouyon Fanny d’Orlyé Craig Simon Sophie Griveau Catherine Sella Laurent Thouin Fethi Bediouia Anne Varenne
Electrochimica Acta - 352 136474 - doi.org/10.1016/j.electacta.2020.136474 - 2020
A new low-cost reversible Glass-NOA®-PDMS microfluidic device was designed for the study of recovery yield of precious metals present in acid media mimicking leach liquors for long-term recycling objectives. It offers the unique advantage of allowing easy washing of the microchannel and renewal of the electrode surface by simply repositioning the microband electrodes which allows this type of device to have a relatively much longer lifespan than irreversibly closed ones. It consists in a re-useable microchip with four graphite microbands electrodes, prepared by screen printing, to set-up an original amperometric device for both depletion and yield quantification. One upstream working electrode is devoted to the depletion of the metallic ions through their electrolysis by electrodeposition while the second downstream working microelectrode is used as real-time detection electrode to evaluate the depletion efficiency. The dimensions of the depletion electrode and of the channel were optimized thanks to numerical simulations for a given range of flow velocities. First, the performances of the device were assessed experimentally according to flow rate and applied potential under continuous flow, and then compared to theoretical predictions using an electrochemical probe, ferrocenemethanol. The proof of concept was then demonstrated for precious metal, by electroreduction of Pd(II) and Au(III) from acidic leach liquors under continuous flow, with a depletion yield of up to 89% and 71% respectively.
Multiple Zones Modification of Open Off-Stoichiometry Thiol-Ene Microchannel by Aptamers: A Methodological Study & A Proof of Concept
Samantha Bourg, Fanny d’Orlyé, Sophie Griveau, Fethi Bedioui, Jose Alberto Fracassi da Silva, andAnne Varenne.
Electrochimica Acta - 8(2) 24 - doi.org/10.3390/chemosensors8020024 - 2020
Off-stoichiometry thiol-ene polymer (OSTE) is an emerging thermoset with interesting properties for the development of lab-on-a-chip (LOAC), such as easy microfabrication process, suitable surface chemistry for modification and UV-transparency. One of the challenges for LOAC development is the integration of all the analytical steps in one microchannel, and particularly, trace level analytes extraction/preconcentration steps. In this study, two strategies for the immobilization of efficient tools for this purpose, thiol-modified (C3-SH) aptamers, on OSTE polymer surfaces were developed and compared. The first approach relies on a direct UV-initiated click chemistry reaction to graft thiol-terminated aptamers on ene-terminated OSTE surfaces. The second strategy consists of the immobilization of thiol-terminated aptamers onto OSTE substrates covered by gold nanoparticles. The presence of an intermediate gold nanoparticle layer on OSTE has shown great interest in the efficient immobilization of aptamers, preserving their interaction with the target, and preventing non-specific adsorption. With this second innovative strategy, we proved, for the first time the concept of creating multiple functional zones for sample treatment in an open OSTE-microchannel thanks to the immobilization of aptamers in consecutive areas by the simple droplet deposition methodology. This methodological development allows further consideration of OSTE material for lab-on-a-chip designs, integrating multiple zones for sample pretreatment, based on molecular recognition by ligands, such as aptamers, in a specific zone of the microchannel and is adaptable to a large range of analytical applications for LOAC industrialization. View Full-Text
Label-free graphene oxide–based SPR genosensor for the quantification of microRNA21
Michael López Mujica, Yuanyuan Zhang, Féthi Bédioui, Fabiana Gutiérrez & Gustavo Rivas
Analytical and Bioanalytical Chemistry - 412 3539–3546 - doi.org/10.1007/s00216-020-02593-w - 2020
This work is focused on the development of a genosensor for microRNA-21 quantification using surface plasmon resonance (SPR) to transduce the hybridization event. The biosensing platform was built by self-assembling two bilayers of poly(diallyldimethylammonium chloride) (PDDA) and graphene oxide (GO) at a gold surface modified with 3-mercaptopropane sulfonate (MPS), followed by the covalent attachment of the DNA probe. GO was used in two directions, to allow the anchoring of the probe DNA and to increase the sensitivity of the biosensing event due to its field enhancer effect. The new bioanalytical platform represents an interesting alternative for the label-free biosensing of microRNA-21, with a linear range between 1.0 fM and 10 nM, a sensitivity of 5.1 ± 0.1 moM−1 and a detection limit of 0.3fM. The proposed sensing strategy was successfully used for the quantification of microRNA-21 in enriched urine samples.

A maltol-containing Ruthenium Polypyridyl Complex as a Potential Anticancer Agent
Anna Notaro, Angelo Frei, Riccardo Rubbiani, Marta Jakubaszek, Uttara Basu, Severin Koch, Cristina Mari, Mazzarine Dotou, Olivier Blacque, Jérémie GouyonJérémie Gouyon Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sci
J. Med. Chem - 63(10) 5568–5584 - doi.org/10.1021/acs.jmedchem.0c00431 - 2020
Chemotherapy remains one of the dominant treatments to cure cancer. However, due to the many inherent drawbacks, there is a search for new chemotherapeutic drugs. Many classes of compounds have been investigated over the years to discover new targets and synergistic mechanisms of action including multicellular targets. In this work, we designed a new chemotherapeutic drug candidate against cancer, namely, [Ru(DIP)2(sq)](PF6) (Ru-sq) (DIP = 4,7-diphenyl-1,10-phenanthroline; sq = semiquinonate ligand). The aim was to combine the great potential expressed by Ru(II) polypyridyl complexes and the singular redox and biological properties associated with the catecholate moiety. Experimental evidence (e.g., X-ray crystallography, electron paramagnetic resonance, electrochemistry) demonstrates that the semiquinonate is the preferred oxidation state of the dioxo ligand in this complex. The biological activity of Ru-sq was then scrutinized in vitro and in vivo, and the results highlight the promising potential of this complex as a chemotherapeutic agent against cancer.


Ruthenium(II) Complex Containing a Redox-Active Semiquinonate Ligand as a Potential Chemotherapeutic Agent: From Synthesis to In Vivo Studies
Dr. Anna Notaro Marta Jakubaszek Severin Koch Dr. Riccardo Rubbiani Dr. Orsolya Dömötör Dr. Éva A. Enyedy Mazzarine Dotou Dr. Fethi Bedioui
J. Med. Chem - 26 22 - - 2020
Cancer is one of the main causes of death worldwide. Chemotherapy, despite its severe side effects, is to date one of the leading strategies against cancer. Metal‐based drugs present several potential advantages when compared to organic compounds and they have gained trust from the scientific community after the approval on the market of the drug cisplatin. Recently, we reported the ruthenium complex ([Ru(DIP)2(sq)](PF6) (where DIP is 4,7‐diphenyl‐1,10‐phenantroline and sq is semiquinonate) with a remarkable potential as chemotherapeutic agent against cancer, both in vitro and in vivo. In this work, we analyse a structurally similar compound, namely [Ru(DIP)2(mal)](PF6), carrying the flavour‐enhancing agent approved by the FDA, maltol (mal). To possess an FDA approved ligand is crucial for a complex, whose mechanism of action might include ligand exchange. Herein, we describe the synthesis and characterisation of [Ru(DIP)2(mal)](PF6), its stability in solutions and under conditions that resemble the physiological ones, and its in‐depth biological investigation. Cytotoxicity tests on different cell lines in 2D model and on HeLa MultiCellular Tumour Spheroids (MCTS) demonstrated that our compound has higher activity than cisplatin, inspiring further tests. [Ru(DIP)2(mal)](PF6) was efficiently internalised by HeLa cells through a passive transport mechanism and severely affected the mitochondrial metabolism.


Increasing the Cytotoxicity of Ru(II) Polypyridyl Complexes by Tuning the Electronic Structure of Dioxo Ligands
Anna Notaro, Marta Jakubaszek, Nils Rotthowe, Federica Maschietto, Robin Vinck, Patrick S. Felder, Bruno Goud, Mickaël Tharaud, Ilaria Ciofini, Fethi Bedioui, Rainer F. Winter, and Gilles Gasser
J. Am. Chem. Soc. - 142(13) 6066–6084 - doi.org/10.1021/jacs.9b12464 - 2020
Due to the great potential expressed by an anticancer drug candidate previously reported by our group, namely, Ru-sq ([Ru(DIP)2(sq)](PF6) (DIP, 4,7-diphenyl-1,10-phenanthroline; sq, semiquinonate ligand), we describe in this work a structure–activity relationship (SAR) study that involves a broader range of derivatives resulting from the coordination of different catecholate-type dioxo ligands to the same Ru(DIP)2 core. In more detail, we chose catechols carrying either an electron-donating group (EDG) or an electron-withdrawing group (EWG) and investigated the physicochemical and biological properties of their complexes. Several pieces of experimental evidences demonstrated that the coordination of catechols bearing EDGs led to deep-red positively charged complexes 1–4 in which the preferred oxidation state of the dioxo ligand is the uninegatively charged semiquinonate. Complexes 5 and 6, on the other hand, are blue/violet neutral complexes, which carry an EWG-substituted dinegatively charged catecholate ligand. The biological investigation of complexes 1–6 led to the conclusion that the difference in their physicochemical properties has a strong impact on their biological activity. Thus, complexes 1–4 expressed much higher cytotoxicities than complexes 5 and 6. Complex 1 constitutes the most promising compound in the series and was selected for a more in depth biological investigation. Apart from its remarkably high cytotoxicity (IC50 = 0.07–0.7 μM in different cancerous cell lines), complex 1 was taken up by HeLa cells very efficiently by a passive transportation mechanism. Moreover, its moderate accumulation in several cellular compartments (i.e., nucleus, lysosomes, mitochondria, and cytoplasm) is extremely advantageous in the search for a potential drug with multiple modes of action. Further DNA metalation and metabolic studies pointed to the direct interaction of complex 1 with DNA and to the severe impairment of the mitochondrial function. Multiple targets, together with its outstanding cytotoxicity, make complex 1 a valuable candidate in the field of chemotherapy research. It is noteworthy that a preliminary biodistribution study on healthy mice demonstrated the suitability of complex 1 for further in vivo studies.



Polarization of Myosin II Refines Tissue Material Properties to Buffer Mechanical Stress
Maria Duda, Natalie J Kirkland, Nargess Khalilgharibi, Melda Tozluoglu , Alice C Yuen , Nicolas Carpi , Anna Bove , Matthieu Piel , Guillaume Charras , Buzz Baum , Yanlan Mao
Dev Cell - 48(2) 245-260.e7 - DOI: 10.1016/j.devcel.2018.12.020 - 2020
mTOR activation is essential and sufficient to cause polycystic kidneys in Tuberous Sclerosis Complex (TSC) and other genetic disorders. In disease models, a sharp increase of proliferation and cyst formation correlates with a dramatic loss of oriented cell division (OCD). We find that OCD distortion is intrinsically due to S6 kinase 1 (S6K1) activation. The concomitant loss of S6K1 in Tsc1-mutant mice restores OCD but does not decrease hyperproliferation, leading to non-cystic harmonious hyper growth of kidneys. Mass spectrometry-based phosphoproteomics for S6K1 substrates revealed Afadin, a known component of cell-cell junctions required to couple intercellular adhesions and cortical cues to spindle orientation. Afadin is directly phosphorylated by S6K1 and abnormally decorates the apical surface of Tsc1-mutant cells with E-cadherin and α-catenin. Our data reveal that S6K1 hyperactivity alters centrosome positioning in mitotic cells, affecting oriented cell division and promoting kidney cysts in conditions of mTOR hyperactivity.
mTOR and S6K1 drive polycystic kidney by the control of Afadin-dependent oriented cell division
Martina Bonucci, Nicolas Kuperwasser, Serena Barbe, Vonda Koka, Delphine de Villeneuve, Chi Zhang, Nishit Srivastava, Xiaoying Jia, Matthew P Stokes, Frank Bienaimé, Virginie Verkarre, Jean Baptiste Lopez, Fanny Jaulin, Marco Pontoglio, Fabiola Terzi, Be
Nature Communications - - DOI : 10.1038/s41467-020-16978-z - 2020
mTOR activation is essential and sufficient to cause polycystic kidneys in Tuberous Sclerosis Complex (TSC) and other genetic disorders. In disease models, a sharp increase of proliferation and cyst formation correlates with a dramatic loss of oriented cell division (OCD). We find that OCD distortion is intrinsically due to S6 kinase 1 (S6K1) activation. The concomitant loss of S6K1 in Tsc1-mutant mice restores OCD but does not decrease hyperproliferation, leading to non-cystic harmonious hyper growth of kidneys. Mass spectrometry-based phosphoproteomics for S6K1 substrates revealed Afadin, a known component of cell-cell junctions required to couple intercellular adhesions and cortical cues to spindle orientation. Afadin is directly phosphorylated by S6K1 and abnormally decorates the apical surface of Tsc1-mutant cells with E-cadherin and α-catenin. Our data reveal that S6K1 hyperactivity alters centrosome positioning in mitotic cells, affecting oriented cell division and promoting kidney cysts in conditions of mTOR hyperactivity.
Heterochromatin-Driven Nuclear Softening Protects the Genome against Mechanical Stress-Induced Damage.
Nava MM, Miroshnikova YA, Biggs LC, Whitefield DB, Metge F, Boucas J, Vihinen H, Jokitalo E, Li X, Garcia Arcos JM, Hoffmann B, Merkel R, Niessen CM, Dahl KN, Wickstrom SA
Cell - 181(4) 800-817 - doi: 10.1016/j.cell.2020.03.052 - 2020
Mechanochemical Crosstalk Produces Cell-Intrinsic Patterning of the Cortex to Orient the Mitotic Spindle.
Andrea Dimitracopoulos, Pragya Srivastava, Agathe Chaigne, Zaw Win, Roie Shlomovitz, Oscar M Lancaster, Maël Le Berre, Matthieu Piel, Kristian Franze, Guillaume Salbreux, Buzz Baum
Current biology - - DOI : S0960-9822(20)30984-2 - 2020
Proliferating animal cells are able to orient their mitotic spindles along their interphase cell axis, setting up the axis of cell division, despite rounding up as they enter mitosis. This has previously been attributed to molecular memory and, more specifically, to the maintenance of adhesions and retraction fibers in mitosis [1-6], which are thought to act as local cues that pattern cortical Gαi, LGN, and nuclear mitotic apparatus protein (NuMA) [3, 7-18]. This cortical machinery then recruits and activates Dynein motors, which pull on astral microtubules to position the mitotic spindle. Here, we reveal a dynamic two-way crosstalk between the spindle and cortical motor complexes that depends on a Ran-guanosine triphosphate (GTP) signal [12], which is sufficient to drive continuous monopolar spindle motion independently of adhesive cues in flattened human cells in culture. Building on previous work [1, 12, 19-23], we implemented a physical model of the system that recapitulates the observed spindle-cortex interactions. Strikingly, when this model was used to study spindle dynamics in cells entering mitosis, the chromatin-based signal was found to preferentially clear force generators from the short cell axis, so that cortical motors pulling on astral microtubules align bipolar spindles with the interphase long cell axis, without requiring a fixed cue or a physical memory of interphase shape. Thus, our analysis shows that the ability of chromatin to pattern the cortex during the process of mitotic rounding is sufficient to translate interphase shape into a cortical pattern that can be read by the spindle, which then guides the axis of cell division.

TO THE IPGG TEAMS:

- For any publication having received the support of the IPGG (presence in the IPGG premises, use of the IPGG technological platform, collaboration between IPGG teams, linked to an IPGG doctoral or postdoctoral grant, or use of the common spaces), you must indicate the following sentence : "This work has received the support of "Institut Pierre-Gilles de Gennes" (laboratoire d'excellence, "Investissements d'avenir" program ANR-10-IDEX-0001-02 PSL and ANR-10-LABX-31.) ".

- For any publication of results obtained through the use of equipment purchased by the Equipex IPGG, you must add the following coding: "ANR-10-EQPX-34".

579 publications.