Laboratory :
Author :
Revue :
Year :

Parallelized DNA tethered bead measurements to scrutinize DNA mechanical structure
Allemand JF, Tardin C, Salomé L.
Nat. Methods - 1;169 46-56 - doi: 10.1016/j.ymeth.2019.07.020. - 2019
Tethering beads to DNA offers a panel of single molecule techniques for the refined analysis of the conformational dynamics of DNA and the elucidation of the mechanisms of enzyme activity. Recent developments include the massive parallelization of these techniques achieved by the fabrication of dedicated nanoarrays by soft nanolithography. We focus here on two of these techniques: the Tethered Particle motion and Magnetic Tweezers allowing analysis of the behavior of individual DNA molecules in the absence of force and under the application of a force and/or a torque, respectively. We introduce the experimental protocols for the parallelization and discuss the benefits already gained, and to come, for these single molecule investigations.
Anisotropic cellular forces support mechanical integrity of the Stratum Corneum barrier
Guo S, Domanov Y, Donovan M, Ducos B, Pomeau Y, Gourier C, Perez E, Luengo GS.
Chem. Mater - 92 45231 - doi: 10.1016/j.jmbbm.2018.12.027 - 2019
The protective function of biological surfaces that are exposed to the exterior of living organisms is the result of a complex arrangement and interaction of cellular components. This is the case for the most external cornified layer of skin, the stratum corneum (SC). This layer is made of corneocytes, the elementary 'flat bricks' that are held together through adhesive junctions. Despite the well-known protective role of the SC under high mechanical stresses and rapid cell turnover, the subtleties regarding the adhesion and mechanical interaction among the individual corneocytes are still poorly known. Here, we explore the adhesion of single corneocytes at different depths of the SC, by pulling them using glass microcantilevers, and measuring their detachment forces. We measured their interplanar adhesion between SC layers, and their peripheral adhesion among cells within a SC layer. Both adhesions increased considerably with depth. At the SC surface, with respect to adhesion, the corneocyte population exhibited a strong heterogeneity, where detachment forces differed by more than one order of magnitude for corneocytes located side by side. The measured detachment forces indicated that in the upper-middle layers of SC, the peripheral adhesion was stronger than the interplanar one. We conclude that the stronger peripheral adhesion of corneocytes in the SC favors an efficient barrier which would be able to resist strong stresses.
PICH and TOP3A cooperate to induce positive DNA supercoiling
Anna Hélène Bizard, Jean-Francois Allemand, Tue Hassenkam, Manikandan Paramasivam
Nature - 26(4) 1 - DOI: 10.1038/s41594-019-0201-6 - 2019
All known eukaryotic topoisomerases are only able to relieve torsional stress in DNA. Nevertheless, it has been proposed that the introduction of positive DNA supercoiling is required for efficient sister-chromatid disjunction by Topoisomerase 2a during mitosis. Here we identify a eukaryotic enzymatic activity that introduces torsional stress into DNA. We show that the human Plk1-interacting checkpoint helicase (PICH) and Topoisomerase 3a proteins combine to create an extraordinarily high density of positive DNA supercoiling. This activity, which is analogous to that of a reverse-gyrase, is apparently driven by the ability of PICH to progressively extrude hypernegatively supercoiled DNA loops that are relaxed by Topoisomerase 3a. We propose that this positive supercoiling provides an optimal substrate for the rapid disjunction of sister centromeres by Topoisomerase 2a at the onset of anaphase in eukaryotic cells.
Mechanistic characterization of the DEAD-box RNA helicase Ded1 from yeast as revealed by a novel technique using single-molecule magnetic tweezers
Saurabh Raj, Debjani Bagchi, Jessica Valle Orero, Josette Banroques, N Kyle Tanner, Vincent Croquette
Nucleic Acids Res. - 47(7) 3699–3710 - - 2019
DEAD-box helicases are involved in all steps of RNA metabolism. They are ATP-dependent RNA binding proteins and RNA-dependent ATPases. They can displace short duplexes, but they lack processivity. Their mechanism and functioning are not clearly understood; classical or bulk biochemical assays are not sufficient to answer these questions. Single-molecule techniques provide useful tools, but they are limited in cases where the proteins are nonprocessive and give weak signals. We present here a new, magnetic-tweezers-based, single-molecule assay that is simple and that can sensitively measure the displacement time of a small, hybridized, RNA oligonucleotide. Tens of molecules can be analyzed at the same time. Comparing the displacement times with and without a helicase gives insights into the enzymatic activity of the protein. We used this assay to study yeast Ded1, which is orthologous to human DDX3. Although Ded1 acts on a variety of substrates, we find that Ded1 requires an RNA substrate for its ATP-dependent unwinding activity and that ATP hydrolysis is needed to see this activity. Further, we find that only intramolecular single-stranded RNA extensions enhance this activity. We propose a model where ATP-bound Ded1 stabilizes partially unwound duplexes and where multiple binding events may be needed to see displacement.
Longitudinal Analyses of Blood Transcriptome During Conversion to Psychosis
Saurabh Raj, Debjani Bagchi, Jessica Valle Orero, Josette Banroques, N Kyle Tanner, Vincent Croquette
Schizophr Bull - 45(1) 247-255 - doi: 10.1093/schbul/sby009 - 2019
The biological processes associated with the onset of schizophrenia remain largely unknown. Current hypotheses favor gene × environment interactions as supported by our recent report about DNA methylation changes during the onset of psychosis. Here, we conducted the first longitudinal transcriptomic analysis of blood samples from 31 at-risk individuals who later converted to psychosis and 63 at-risk individuals who did not. Individuals were followed for a maximum of 1 year. Blood samples were collected at baseline and at the end of follow-up and individuals served as their own controls. Differentially expressed genes between the 2 groups were identified using the RNA sequencing of an initial discovery subgroup (n = 15 individuals). The most promising results were replicated using high-throughput real-time qPCR in the whole cohort (n = 94 individuals). We identified longitudinal changes in 4 brain-expressed genes based on RNAseq analysis. One of these genes (CPT1A) was replicated in the whole cohort. The previously observed hypermethylation in NRP1 and GSTM5 during the onset of psychosis correlated with a decrease in corresponding gene expression. RNA sequencing also identified 2 co-expression networks that were impaired after conversion compared with baseline-the Wnt pathway including AKT1, CPT1A and semaphorins, and the Toll-like receptor pathway, related to innate immunity. This longitudinal study of transcriptomic changes in individuals with at-risk mental state revealed alterations during conversion to psychosis in pathways and genes relevant to schizophrenia. These results may be a first step toward better understanding psychosis onset. They may also help to identify new biomarkers and targets for disease-modifying therapeutic strategies
Optical control of protein activity and gene expression by photoactivation of caged cyclofen
Hamouri F, Zhang W, Aujard I, Le Saux T, Ducos B, Vriz S, Jullien L, Bensimon D
Methods Enzymol - 624 44927 - doi: 10.1016/bs.mie.2019.04.009 - 2019
The use of light to control the expression of genes and the activity of proteins is a rapidly expanding field. While many of these approaches use a fusion between a light activatable protein and the protein of interest to control the activity of the latter, it is also possible to control the activity of a protein by uncaging a specific ligand. In that context, controlling the activation of a protein fused to the modified estrogen receptor (ERT) by uncaging its ligand cyclofen-OH has emerged as a generic and versatile method to control the activation of proteins quantitatively, quickly and locally in a live organism. Here, we present the experimental details behind this approach.
Contribution of proteases and cellulases produced by solid-state fermentation to the improvement of corn ethanol production
Anaïs Guillaume, Aurore Thorigné, Yoann Carré, Joëlle Vinh and Loïc Levavasseur
Biosci Rep - 6 7 - - 2019
By cultivating a strain of Aspergillus tubingensis on agro-industrial by-products using solid-state fermentation technology, a biocatalyst containing more than 130 different enzymes was obtained. The enzymatic complex was composed mainly of hydrolases, among which a protease, an aspergillopepsin, accounted for more than half of the total proteins. Cell-wall-degrading enzymes such as pectinases, cellulases and hemicellulases were also highly represented. Adding the biocatalyst to corn mash at 1 kg/T corn allowed to significantly improve ethanol production performances. The final ethanol concentration was increased by 6.8% and the kinetics was accelerated by 14 h. The aim of this study was to identify the enzymes implicated in the effect on corn ethanol production. By fractionating the biocatalyst, the particular effect of the major enzymes was investigated. Experiments revealed that, together, the protease and two cellulolytic enzymes (an endoglucanase and a β-glucosidase) were responsible for 80% of the overall effect of the biocatalyst. Nevertheless, the crude extract of the biocatalyst showed greater impact than the combination of up to seven purified enzymes, demonstrating the complementary enzymatic complex obtained by solid-state fermentation. This technology could, therefore, be a relevant natural alternative to the use of GMO-derived enzymes in the ethanol industry.
Benzoquinone, a leukemogenic metabolite of benzene, catalytically inhibits the protein tyrosine phosphatase PTPN2 and alters STAT1 signaling
Romain Duval, Linh-Chi Bui, Cécile Mathieu, Qing Nian, Jérémy Berthelet, Ximing Xu, Iman Haddad, Joelle Vinh, Jean-Marie Dupret, Florent Busi, Fabien Guidez, Christine Chomienne, and Fernando Rodrigues-Lima
J Biol Chem - 294(33) 12483–12494 - doi: 10.1074/jbc.RA119.008666 - 2019
Protein tyrosine phosphatase, nonreceptor type 2 (PTPN2) is mainly expressed in hematopoietic cells, where it negatively regulates growth factor and cytokine signaling. PTPN2 is an important regulator of hematopoiesis and immune/inflammatory responses, as evidenced by loss-of-function mutations of PTPN2 in leukemia and lymphoma and knockout mice studies. Benzene is an environmental chemical that causes hematological malignancies, and its hematotoxicity arises from its bioactivation in the bone marrow to electrophilic metabolites, notably 1,4-benzoquinone, a major hematotoxic benzene metabolite. Although the molecular bases for benzene-induced leukemia are not well-understood, it has been suggested that benzene metabolites alter topoisomerases II function and thereby significantly contribute to leukemogenesis. However, several studies indicate that benzene and its hematotoxic metabolites may also promote the leukemogenic process by reacting with other targets and pathways. Interestingly, alterations of cell-signaling pathways, such as Janus kinase (JAK)/signal transducer and activator of transcription (STAT), have been proposed to contribute to benzene-induced malignant blood diseases. We show here that 1,4-benzoquinone directly impairs PTPN2 activity. Mechanistic and kinetic experiments with purified human PTPN2 indicated that this impairment results from the irreversible formation (kinact = 645 m−1·s−1) of a covalent 1,4-benzoquinone adduct at the catalytic cysteine residue of the enzyme. Accordingly, cell experiments revealed that 1,4-benzoquinone exposure irreversibly inhibits cellular PTPN2 and concomitantly increases tyrosine phosphorylation of STAT1 and expression of STAT1-regulated genes. Our results provide molecular and cellular evidence that 1,4-benzoquinone covalently modifies key signaling enzymes, implicating it in benzene-induced malignant blood diseases.

Investigation of serum proteome homeostasis during radiation therapy by a quantitative proteomics approach
Amira Ouerhani, Giovanni Chiappetta, Oussema Souiai, Halima Mahjoubi, Joelle Vinh
Biosci Rep - 39(7) - doi: 10.1042/BSR20182319 - 2019
The purpose of the present study is to analyze the serum proteome of patients receiving Radiation Therapy (RT) at different stages of their treatment to discovery candidate biomarkers of the radiation-induced skin lesions and the molecular pathways underlying the radiation signatures. Six stages of RT treatment were monitored from patients treated because of brain cancer: before starting the treatment, during the treatment (four time points), and at 4 weeks from the last RT dose. Serum samples were analyzed by a proteomics approach based on the Data Independent Acquisition (DIA) mass spectrometry (MS). RT induced clear changes in the expression levels of 36 serum proteins. Among these, 25 proteins were down- or up-regulated significantly before the emergence of skin lesions. Some of these were still deregulated after the completion of the treatment. Few days before the appearance of the skin lesions, the levels of some proteins involved in the wound healing processes were down-regulated. The pathway analysis indicated that after partial body irradiation, the expression levels of proteins functionally involved in the acute inflammatory and immune response, lipoprotein process and blood coagulation, were deregulated.

Global host molecular perturbations upon in situ loss of bacterial endosymbionts in the deep-sea mussel Bathymodiolus azoricus assessed using proteomics and transcriptomics
Camille Détrée, Iman Haddad, Emmanuelle Demey-Thomas, Joëlle Vinh, François H Lallier, Arnaud Tanguy, Jean Mary
BMC Genomics - 20(1) 109 - doi: 10.1186/s12864-019-5456-0 - 2019
Background: Colonization of deep-sea hydrothermal vents by most invertebrates was made efficient through their adaptation to a symbiotic lifestyle with chemosynthetic bacteria, the primary producers in these ecosystems. Anatomical adaptations such as the establishment of specialized cells or organs have been evidenced in numerous deep-sea invertebrates. However, very few studies detailed global inter-dependencies between host and symbionts in these ecosystems. In this study, we proposed to describe, using a proteo-transcriptomic approach, the effects of symbionts loss on the deep-sea mussel Bathymodiolus azoricus' molecular biology. We induced an in situ depletion of symbionts and compared the proteo-transcriptome of the gills of mussels in three conditions: symbiotic mussels (natural population), symbiont-depleted mussels and aposymbiotic mussels.

Results: Global proteomic and transcriptomic results evidenced a global disruption of host machinery in aposymbiotic organisms. We observed that the total number of proteins identified decreased from 1118 in symbiotic mussels to 790 in partially depleted mussels and 761 in aposymbiotic mussels. Using microarrays we identified 4300 transcripts differentially expressed between symbiont-depleted and symbiotic mussels. Among these transcripts, 799 were found differentially expressed in aposymbiotic mussels and almost twice as many in symbiont-depleted mussels as compared to symbiotic mussels. Regarding apoptotic and immune system processes - known to be largely involved in symbiotic interactions - an overall up-regulation of associated proteins and transcripts was observed in symbiont-depleted mussels.

Conclusion: Overall, our study showed a global impairment of host machinery and an activation of both the immune and apoptotic system following symbiont-depletion. One of the main assumptions is the involvement of symbiotic bacteria in the inhibition and regulation of immune and apoptotic systems. As such, symbiotic bacteria may increase their lifespan in gill cells while managing the defense of the holobiont against putative pathogens.

Keywords: Chemoautotrophic symbiosis; Hydrothermal vent; In situ experiment; Mutualism; Proteo-transcriptomics.


- For any publication having received the support of the IPGG (presence in the IPGG premises, use of the IPGG technological platform, collaboration between IPGG teams, linked to an IPGG doctoral or postdoctoral grant, or use of the common spaces), you must indicate the following sentence : "This work has received the support of "Institut Pierre-Gilles de Gennes" (laboratoire d'excellence, "Investissements d'avenir" program ANR-10-IDEX-0001-02 PSL and ANR-10-LABX-31.) ".

- For any publication of results obtained through the use of equipment purchased by the Equipex IPGG, you must add the following coding: "ANR-10-EQPX-34".

579 publications.