Université PSL

Publications

SEARCH

Laboratory :
Author :
Revue :
Year :
A new microfluidic approach for the one-step capture, amplification and label-free quantification of bacteria from raw samples
Iago Pereiro, Amel Bendali, Sanae Tabnaoui, Lucile Alexandre, Jana Srbova, Zuzana Bilkova, Shane Deegan, Lokesh Joshi, Jean-Louis Viovy, Laurent Malaquin, Bruno Dupuy and Stéphanie Descroix
Chem. Sci. - 8(2) 1329-1336 - DOI: 10.1039/C6SC03880H - 2019
A microfluidic method to specifically capture and detect infectious bacteria based on immunorecognition and proliferative power is presented. It involves a microscale fluidized bed in which magnetic and drag forces are balanced to retain antibody-functionalized superparamagnetic beads in a chamber during sample perfusion. Captured cells are then cultivated in situ by infusing nutritionally-rich medium. The system was validated by the direct one-step detection of Salmonella Typhimurium in undiluted unskimmed milk, without pre-treatment. The growth of bacteria induces an expansion of the fluidized bed, mainly due to the volume occupied by the newly formed bacteria. This expansion can be observed with the naked eye, providing simple low-cost detection of only a few bacteria and in a few hours. The time to expansion can also be measured with a low-cost camera, allowing quantitative detection down to 4 cfu (colony forming unit), with a dynamic range of 100 to 107 cfu ml−1 in 2 to 8 hours, depending on the initial concentration. This mode of operation is an equivalent of quantitative PCR, with which it shares a high dynamic range and outstanding sensitivity and specificity, operating at the live cell rather than DNA level. Specificity was demonstrated by controls performed in the presence of a 500× excess of non-pathogenic Lactococcus lactis. The system's versatility was demonstrated by its successful application to the detection and quantitation of Escherichia coli O157:H15 and Enterobacter cloacae. This new technology allows fast, low-cost, portable and automated bacteria detection for various applications in food, environment, security and clinics.
Magnetic fluidized bed for solid phase extraction in microfluidic systems
Pereiro, Iago ; Tabnaoui, Sanae ; Fermigier, Marc ; du Roure, Olivia ; Descroix, Stephanie ; Viovy, Jean-Louis ; Malaquin, Laurent
Lab. Chip - 17, 9 1603-1615 - DOI: 10.1039/C7LC00063D - 2019
Fluidization, a process in which a granular solid phase behaves like a fluid under the influence of an imposed upward fluid flow, is routinely used in many chemical and biological engineering applications. It brings, to applications involving fluid–solid exchanges, advantages such as high surface to volume ratio, constant mixing, low flow resistance, continuous operation and high heat transfer. We present here the physics of a new miniaturized, microfluidic fluidized bed, in which gravity is replaced by a magnetic field created by an external permanent magnet, and the solid phase is composed of magnetic microbeads with diameters ranging from 1 to 5 μm. These beads can be functionalized with different ligands, catalysts or enzymes, in order to use the fluidized bed as a continuous purification column or bioreactor. It allows flow-through operations at flow rates ranging from 100 nL min−1 up to 5 μL min−1 at low driving pressures (<100 mbar) with intimate liquid/solid contact and a continuous recirculation of beads for enhanced target capture efficiencies. The physics of the system presents significant differences as compared to conventional fluidized beds, which are studied here. The effects of magnetic field profile, flow chamber shape and magnetic bead dipolar interactions on flow regimes are investigated, and the different regimes of operation are described. Qualitative rules to obtain optimal operation are deduced. Finally, an exemplary use as a platform for immunocapture is provided, presenting a limit of detection of 0.2 ng mL−1 for 200 μL volume samples.
The power of solid supports in multiphase and droplet-based microfluidics: towards clinical applications
Serra, M; Ferraro, D; Pereiro, I; Viovy, J-L; Descroix, S
Lab. Chip - 17 3979-3999 - DOI:10.1039/c7lc00582b - 2019
Multiphase and droplet microfluidic systems are growing in relevance in bioanalytical-related fields, especially due to the increased sensitivity, faster reaction times and lower sample/reagent consumption of many of its derived bioassays. Often applied to homogeneous (liquid/liquid) reactions, innovative strategies for the implementation of heterogeneous (typically solid/liquid) processes have recently been proposed. These involve, for example, the extraction and purification of target analytes from complex matrices or the implementation of multi-step protocols requiring efficient washing steps. To achieve this, solid supports such as functionalized particles (micro or nanometric) presenting different physical properties (e.g. magnetic, optical or others) are used for the binding of specific entities. The manipulation of such supports with different microfluidic principles has both led to the miniaturization of existing biomedical protocols and the development of completely new strategies for diagnostics and research. In this review, multiphase and droplet-based microfluidic systems using solid suspensions are presented and discussed with a particular focus on: i) working principles and technological developments of the manipulation strategies and ii) applications, critically discussing the level of maturity of these systems, which can range from initial proofs of concept to real clinical validations.
Microfluidic model of the platelet-generating organ: beyond bone marrow biomimetics
Antoine Blin, Anne Le Goff, Aurélie Magniez, Sonia Poirault-Chassac, Bruno Teste, Géraldine Sicot, Kim Anh Nguyen, Feriel S. Hamdi, Mathilde Reyssat & Dominique Baruch
Nature - Scientific Reports 6 21700 - DOI: 10.1038/srep21700 - 2019
We present a new, rapid method for producing blood platelets in vitro from cultured megakaryocytes based on a microfluidic device. This device consists in a wide array of VWF-coated micropillars. Such pillars act as anchors on megakaryocytes, allowing them to remain trapped in the device and subjected to hydrodynamic shear. The combined effect of anchoring and shear induces the elongation of megakaryocytes and finally their rupture into platelets and proplatelets. This process was observed with megakaryocytes from different origins and found to be robust. This original bioreactor design allows to process megakaryocytes at high throughput (millions per hour). Since platelets are produced in such a large amount, their extensive biological characterisation is possible and shows that platelets produced in this bioreactor are functional.
Micro fl uidic actuators based on temperature-responsive hydrogels
Loïc D'Eramo, Benjamin Chollet, Marie Leman, Ekkachai Martwong, Mengxing Li, Hubert Geisler, Jules Dupire, Margaux Kerdraon, Clémence Vergne, Fabrice Monti, Yvette Tran and Patrick Tabeling
- 4 17069 - doi:10.1038/micronano.2017.69 - 2019
The concept of using stimuli-responsive hydrogels to actuatefluids in microfluidic devices is particularly attractive, but limitations,in terms of spatial resolution, speed, reliability and integration, have hindered its development during the past two decades. By patterning and grafting poly(N-isopropylacrylamide) PNIPAM hydrogel films on plane substrates with a 2μm horizontal resolution and closing the system afterward, we have succeeded in unblocking bottlenecks that thermo-sensitive hydrogel technology has
been challenged with until now. In this paper, we demonstrate, for thefi rst time with this technology, devices with up to 7800
actuated micro-cages that sequester and release solutes, along with valves actuated individually with closing and opening switching
times of 0.6 ± 0.1 and 0.25± 0.15 s, respectively. Two applications of this technology are illustrated in the domain of single cell
handling and the nuclear acid amplification test (NAAT) for the Human Synaptojanin 1 gene, which is suspected to be involved in several neurodegenerative diseases such as Parkinson’s disease. The performance of the temperature-responsive hydrogels we
demonstrate here suggests that in association with their moderate costs, hydrogels may represent an alternative to the actuation orhandling techniques currently used in microfluidics, that are, pressure actuated polydimethylsiloxane (PDMS) valves and droplets

Droplet generation at Hele-Shaw microfluidic T-junction
I. Chakraborty, J. Ricouvier, P. Yazghur, P. Tabeling, A. Leshansky
Phys. Fluids - 31(2) 22010 - - 2019
Universal diagram for the kinetics of particle deposition in micro channels
C.M. Cejas, F. Monti, M. Truchet, J.-P. Burnouf, P. Tabeling
Phys. Rev. E - 98 62606 - - 2019
Universal diagram for the kinetics of particle deposition in micro channels.
Foam as a self-assembling amorphous photonic band gap material
View ORCID ProfileJoshua Ricouvier, Patrick Tabeling, and Pavel Yazhgur
Phys. Fluids - 116 (19) 9202-9207 - doi.org/10.1073/pnas.1820526116 - 2019
We show that slightly polydisperse disordered 2D foams can be used as a self-assembled template for isotropic photonic band gap (PBG) materials for transverse electric (TE) polarization. Calculations based on in-house experimental and simulated foam structures demonstrate that, at sufficient refractive index contrast, a dry foam organization with threefold nodes and long slender Plateau borders is especially advantageous to open a large PBG. A transition from dry to wet foam structure rapidly closes the PBG mainly by formation of bigger fourfold nodes, filling the PBG with defect modes. By tuning the foam area fraction, we find an optimal quantity of dielectric material, which maximizes the PBG in experimental systems. The obtained results have a potential to be extended to 3D foams to produce a next generation of self-assembled disordered PBG materials, enabling fabrication of cheap and scalable photonic devices.
Droplet generation at Hele-Shaw microfluidic T-junction
I. Chakraborty, J. Ricouvier, P. Yazhgur, P. Tabeling, and A. M. Leshansky,
Phys. Fluids - 31 2 - doi.org/10.1063/1.5086808 - 2019
We proposed the combined numerical and experimental study of the dynamics of droplets generation at shallow microfluidic T-junction, where the flow is strongly confined in the vertical direction. The numerical simulation is performed by employing quasi-2D Hele-Shaw approximation with an interface capturing procedure based on coupled Level-Set and Volume-of-Fluid methods. We investigate the effect of the capillary number, Ca, the channel geometry (cross section aspect ratio, χ), and the flow rate (disperse-to-continuous phases) ratio, Γ, on the dynamics of the droplet breakup. Depending on Ca, three distinct flow regimes are identified: squeezing, tearing and jetting. In the squeezing regime at low Ca, the size of the generated droplets depends on χ and Γ, while it is almost insensitive to Ca in agreement to previous studies. In the tearing regime at moderate Ca, the droplet size decreases as ∼Ca−1/3, while it is only a weak function of χ and Γ. Finally, in the jetting regime, the steady co-flow of both phases takes place at high enough Ca. The numerical predictions based on the Hele-Shaw flow approximation are in excellent agreement with our in-house experimental results, demonstrating that the proposed approach can be effectively used for computationally inexpensive and adequately accurate modeling of biphasic flows in shallow microfluidic devices.
Stress field inside the bath determines dip coating with yield-stress fluids in cylindrical geometry
Wilbert J Smit, Christophe Kusina, Jean-François Joanny, Annie Colin
Phys. Rev. Lett. - 123(14) 148002 - - 2019
We study experimentally and theoretically the thickness of the coating obtained by pulling out a rod from a reservoir of yield-stress fluid. Opposite to Newtonian fluids, the coating thickness for a fluid of large enough yield stress is determined solely by the flow inside the reservoir and not by the flow inside the meniscus. The stress field inside the reservoir determines the thickness of the coating layer. The thickness is observed to increase nonlinearly with the sizes of the rod and of the reservoir. We develop a theoretical framework that describes this behavior and allows us to precisely predict the coating thickness.

410 publications.