Université PSL

Publications

SEARCH

Laboratory :
Author :
Revue :
Year :
Supershear Rayleigh Waves at a Soft Interface
Anne Le Goff, Pablo Cobelli, and Guillaume Lagubeau
Phys. Rev. Lett. - Vol.110 236101 - DOI: http://dx.doi.org/10.1103/PhysRevLett.110.236101 - 2013
We report on the experimental observation of waves at a liquid foam surface propagating faster than the bulk shear waves. The existence of such waves has long been debated, but the recent observation of supershear events in a geophysical context has inspired us to search for their existence in a model viscoelastic system. An optimized fast profilometry technique allows us to observe on a liquid foam surface the waves triggered by the impact of a projectile. At high impact velocity, we show that the expected subshear Rayleigh waves are accompanied by faster surface waves that can be identified as supershear Rayleigh waves.
Electronic hybridization detection in microarray format and DNA genotyping
Antoine Blin, Ismaïl Cissé and Ulrich Bockelmann
Scientific Reports - 4(n°4194) - DOI: 10.1038/srep04194 - 2013
We describe an approach to substituting a fluorescence microarray with a surface made of an arrangement of electrolyte-gated field effect transistors. This was achieved using a dedicated blocking of non-specific interactions and comparing threshold voltage shifts of transistors exhibiting probe molecules of different base sequence. We apply the approach to detection of the 35delG mutation, which is related to non-syndromic deafness and is one of the most frequent mutations in humans. The process involves barcode sequences that are generated by Tas-PCR, a newly developed replication reaction using polymerase blocking. The barcodes are recognized by hybridization to surface attached probes and are directly detected by the semiconductor device.
Revealing the competition between peeled DNA, melting bubbles, and S-DNA during DNA overstretching using fluorescence microscopy
Graeme A. Kinga, Peter Grossa, Ulrich Bockelmannb, Mauro Modestic, Gijs J. L. Wuitea, and Erwin J. G. Petermana
Proc. Nat. Acad. Sci. USA - vol.110 (n°10) 3859–64 - DOI: 10.1073/pnas.1213676110 - 2013
Mechanical stress plays a key role in many genomic processes, such as DNA replication and transcription. The ability to predict the response of double-stranded (ds) DNA to tension is a cornerstone of understanding DNA mechanics. It is widely appreciated that torsionally relaxed dsDNA exhibits a structural transition at forces of ∼65 pN, known as overstretching, whereby the contour length of the molecule increases by ∼70%. Despite extensive investigation, the structural changes occurring in DNA during overstretching are still generating considerable debate. Three mechanisms have been proposed to account for the increase in DNA contour length during overstretching: strand unpeeling, localized base-pair breaking (yielding melting bubbles), and formation of S-DNA (strand unwinding, while base pairing is maintained). Here we show, using a combination of fluorescence microscopy and optical tweezers, that all three structures can exist, uniting the often contradictory dogmas of DNA overstretching. We visualize and distinguish strand unpeeling and melting-bubble formation using an appropriate combination of fluorescently labeled proteins, whereas remaining B-form DNA is accounted for by using specific fluorescent molecular markers. Regions of S-DNA are associated with domains where fluorescent probes do not bind. We demonstrate that the balance between the three structures of overstretched DNA is governed by both DNA topology and local DNA stability. These findings enhance our knowledge of DNA mechanics and stability, which are of fundamental importance to understanding how proteins modify the physical state of DNA.
Cyclic Olefin Copolymer Plasma millireactors
Schelcher G, Guyon C, Ognier S, Cavadias S, Martinez E, Taniga V, Malaquin L, Tabeling P and Tatoulian M
Lab. Chip - 14(16) 3037-42 - DOI: 10.1039/c4lc00423j - 2013
The novelty of this paper lies in the development of a multistep process for the manufacturing of plasma millireactors operating at atmospheric pressure. The fabrication process relies on the integration of metallic electrodes over a cyclic olefin copolymer chip by a combination of photopatterning and sputtering. The developed plasma millireactors were successfully tested by creating air discharges in the gas volume of the millichannel. A sputtered silica layer was deposited on the channel walls to provide a barrier between the plasma and the polymer in order to prevent the alteration of polymer surfaces during the plasma treatment. Interest in this process of employing plasma millireactor as a high reactive environment is demonstrated here by the degradation of a volatile organic compound (acetaldehyde) in ambient air. In this miniaturized device, we obtained a high acetaldehyde conversion (98%) for a specific input energy lower than 200 J L(-1).
Red blood cells decorated with functionalized core–shell magnetic nanoparticles: elucidation of the adsorption mechanism
Thanh Duc Mai, Fanny d’Orlye, Christine Ménager, Anne Varenne and Jean-Michel Siaugue
Chem. Comm. - -49 5393—95 - DOI: 10.1039/C3CC41513A - 2013
http://pubs.rsc.org/en/content/articlehtml/2013/CC/C3CC41513A
Microfluidic device with integrated microfilter of conical-shaped holes for high efficiency and high purity capture of circulating tumor cells
Yadong Tang, Jian Shi, Sisi Li, Li Wang, Yvon E. Cayre and Yong Chen
Scientific Reports - 4 (n°6052) - DOI:10.1038/srep06052 - 2013
Capture of circulating tumor cells (CTCs) from peripheral blood of cancer patients has major implications for metastatic detection and therapy analyses. Here we demonstrated a microfluidic device for high efficiency and high purity capture of CTCs. The key novelty of this approach lies on the integration of a microfilter with conical-shaped holes and a micro-injector with cross-flow components for size dependent capture of tumor cells without significant retention of non-tumor cells. Under conditions of constant flow rate, tumor cells spiked into phosphate buffered saline could be recovered and then cultured for further analyses. When tumor cells were spiked in blood of healthy donors, they could also be recovered at high efficiency and high clearance efficiency of white blood cells. When the same device was used for clinical validation, CTCs could be detected in blood samples of cancer patients but not in that of healthy donors. Finally, the capture efficiency of tumor cells is cell-type dependent but the hole size of the filter should be more closely correlated to the nuclei size of the tumor cells. Together with the advantage of easy operation, low-cost and high potential of integration, this approach offers unprecedented opportunities for metastatic detection and cancer treatment monitoring.
Selection Dynamics in Transient Compartmentalization
Alex Blokhuis, David Lacoste, Philippe Nghe, and Luca Peliti
Phys. Rev. Lett. - 120(15) 158101 - doi: 10.1103/PhysRevLett.120.158101 - 2018
Transient compartments have been recently shown to be able to maintain functional replicators in the context of prebiotic studies. Here, we show that a broad class of selection dynamics is able to achieve this goal. We identify two key parameters, the relative amplification of nonactive replicators (parasites) and the size of compartments. These parameters account for competition and diversity, and the results are relevant to similar multilevel selection problems, such as those found in virus-host ecology and trait group selection.
Microfluidic actuators based on temperature-responsive hydrogels
Loïc D'Eramo, Benjamin Chollet, Marie Leman, Ekkachai Martwong, Mengxing Li, Hubert Geisler, Jules Dupire, Margaux Kerdraon, Clémence Vergne, Fabrice Monti, Yvette Tran & Patrick Tabeling
- 17069 (2018) - doi.org/10.1038/micronano.2017.69 - 2018
The concept of using stimuli-responsive hydrogels to actuate fluids in microfluidic devices is particularly attractive, but limitations, in terms of spatial resolution, speed, reliability and integration, have hindered its development during the past two decades. By patterning and grafting poly(N-isopropylacrylamide) PNIPAM hydrogel films on plane substrates with a 2 μm horizontal resolution and closing the system afterward, we have succeeded in unblocking bottlenecks that thermo-sensitive hydrogel technology has been challenged with until now. In this paper, we demonstrate, for the first time with this technology, devices with up to 7800 actuated micro-cages that sequester and release solutes, along with valves actuated individually with closing and opening switching times of 0.6±0.1 and 0.25±0.15 s, respectively. Two applications of this technology are illustrated in the domain of single cell handling and the nuclear acid amplification test (NAAT) for the Human Synaptojanin 1 gene, which is suspected to be involved in several neurodegenerative diseases such as Parkinson’s disease. The performance of the temperature-responsive hydrogels we demonstrate here suggests that in association with their moderate costs, hydrogels may represent an alternative to the actuation or handling techniques currently used in microfluidics, that are, pressure actuated polydimethylsiloxane (PDMS) valves and droplets.
Hydrophobization of Silica Nanoparticles in Water: Nanostructure and Response to Drying Stress
Solenn Moro, Caroline Parneix, Bernard Cabane†, Nicolas Sanson, and Jean-Baptiste d’Espinose de Lacaillerie
Langmuir - 33, 19 4709-4719 - DOI: 10.1021/acs.langmuir.6b04505 - 2017
We report on the impact of surface hydrophobization on the structure of aqueous silica dispersions and how this structure resists drying stress. Hydrophilic silica particles were hydrophobized directly in water using a range of organosilane precursors, with a precise control of the grafting density. The resulting nanostructure was precisely analyzed by a combination of small-angle X-ray scattering (SAXS) and cryo-microscopy (cryo-TEM). Then, the dispersion was progressively concentrated by drying, and the evolution of the nanostructures as a function of the grafting density was followed by SAXS. At the fundamental level, because the hydrophobic character of the silica surfaces could be varied continuously through a precise control of the grafting density, we were able to observe how the hydrophobic interactions change particles interactions and aggregates structures. Practically, this opened a new route to tailor the final structure, the residual porosity, and the damp-proof properties of the fully dried silica. For example, regardless of the nature of the hydrophobic precursor, a grafting density of 1 grafter per nm2 optimized the interparticle interactions in solution in view to maximize the residual porosity in the dried material (0.9 cm3/g) and reduced the water uptake to less than 4% in weight compared to the typical value of 13% for hydrophilic particles (at T = 25 °C and relative humidity = 80%).
Interparticle Capillary Forces at a Fluid − Fluid Interface with Strong Polymer-Induced Aging
Stefano Cappelli, Arthur M. de Jon, Jean Baudry, and Menno W. J. Prins
Langmuir - 33 (3) 696–705 - DOI: 10.1021/acs.langmuir.6b03910 - 2017
We report on a measurement of forces between particles adsorbed at a water–oil interface in the presence of an oil-soluble polymer. The cationic polymer interacts electrostatically with the negatively charged particles, thereby modulating the particle contact angle and the magnitude of capillary attraction between the particles. However, polymer adsorption to the interface also generates an increase in the apparent interfacial viscosity over several orders of magnitude in a time span of a few hours. We have designed an experiment in which repeated motion trajectories are measured on pairs of particles. The experiment gives an independent quantification of the interfacial drag coefficient (10–7–10–4 Ns/m) and of the interparticle capillary forces (0.1–10 pN). We observed that the attractive capillary force depends on the amount of polymer in the oil phase and on the particle pair. However, the attraction appears to be independent of the surface rheology, with changes over a wide range of apparent viscosity values due to aging. Given the direction (attraction), the range (∼μm), and the distance dependence (∼1/S5) of the observed interparticle force, we interpret the force as being caused by quadrupolar deformations of the fluid–fluid interface induced by particle surface roughness. The results suggest that capillary forces are equilibrated in the early stages of interface aging and thereafter do not change anymore, even though strong changes in surface rheology still occur. The described experimental approach is powerful for studying dissipative as well as conservative forces of micro- and nanoparticles at fluid–fluid interfaces for systems out of equilibrium.

289 publications.