Université PSL



Laboratory :
Author :
Revue :
Year :


- Pour toute publication de résultats ayant reçu l’aide de l’IPGG (présence dans les locaux de l’IPGG, passage sur la plateforme technologique de l’IPGG, collaboration inter équipes IPGG, lié à une bourse doctorale ou postdoctorale IPGG, ou encore utilisation des espaces communs), il vous faut indiquer  cette phrase « Ce travail a été réalisé avec le soutien du laboratoire d’excellence Institut Pierre-Gilles de Gennes (programme Investissements d’avenir ANR-10-IDEX-0001-02 PSL et ANR-10-LABX-31). » / « This work has received the support of "Institut Pierre-Gilles de Gennes" (laboratoire d’excellence, “Investissements d’avenir” program ANR-10-IDEX-0001-02 PSL and ANR-10-LABX-31.). ».

- Pour toute publication de résultats obtenu via l'utilisation d’un équipement acheté par l’Equipex IPGG, il vous faut ajouter  la codification suivante : « ANR-10-EQPX-34 ».

Density waves in shear-thickening suspensions
Guillaume Ovarlez, Anh Vu Nguyen Le2, Wilbert J. Smit2, Abdoulaye Fall
Science Advances - 6 16 - DOI: 10.1126/sciadv.aay5589 - 2020
Shear thickening corresponds to an increase of the viscosity as a function of the shear rate. It is observed in many concentrated suspensions in nature and industry: water or oil saturated sediments, crystal-bearing magma, fresh concrete, silica suspensions, and cornstarch mixtures. Here, we reveal how shear-thickening suspensions flow, shedding light onto as yet non-understood complex dynamics reported in the literature. When shear thickening is important, we show the existence of density fluctuations that appear as periodic waves moving in the direction of flow and breaking azimuthal symmetry. They come with strong normal stress fluctuations of the same periodicity. The flow includes small areas of normal stresses of the order of tens of kilopascals and areas of normal stresses of the order of hundreds of pascals. These stress inhomogeneities could play an important role in the damage caused by thickening fluids in the industry.
Shear thickening in dense non-Brownian suspensions: Viscous to inertial transition
Y. Madraki, A. Oakley, A. Nguyen Le, A. Colin, G. Ovarlez, and S. Hormozi
Journal of Rheology - 64 27 - doi.org/10.1122/1.5129680 - 2020
We present an experimental study on the viscous to inertial mode of shear thickening in dense non-Brownian suspensions. We design a model suspension consisting of monosized spherical particles within a Newtonian suspending fluid. We develop a protocol for the rheological characterization of dense suspensions using the conventional rheometry technique. Our results provide constitutive laws for suspensions with solid volume fractions close to jamming when both viscous and inertial effects at the particle scale are present. We perform atomic force microscopy to measure forces between the particles immersed in the suspending fluid and show that our system of study corresponds to the frictionless regime of dense suspensions in which viscous and collisional forces dissipate the energy. Finally, we show that the proposed empirical constitutive laws, when approaching jamming, predict the dynamics of dense suspensions in a transient boundary driven flow.
Impact of the Wetting Length on Flexible Blade Spreading
Marion Krapez, Anaïs Gauthier, Hamid Kellay, Jean-Baptiste Boitte, Odile Aubrun, Jean-François Joanny, and Annie Colin
Phys. Rev. Lett. - 125 254506 - DOI:https://doi.org/10.1103 - 2020
We study the spreading of a Newtonian fluid by a deformable blade, a common industrial problem, characteristic of elastohydrodynamic situations. Here, we consider the case of a finite reservoir of liquid, emptying as the liquid is spread. We evidence the role of a central variable: the wetting length , which sets a boundary between the wet and dry parts of the blade. We show that the deposited film thickness
depends quadratically with. We study this problem experimentally and numerically by integration of the elastohydrodynamic equations, and finally propose a scaling law model to explain how influences the spreading dynamics.
Liquid-liquid coffee-ring effect.
Vincent Poulichet,Mathieu Morel,Sergii Rudiuk,Damien Baigl
Journal of Colloid and Interface Science - - DOI: 10.1016/j.jcis.2020.03.094 - 2020
The so-called coffee-ring effect (CRE) is extraordinarily common, problematic in industry and attractively puzzling for researchers, with the accepted rule that it requires two key-ingredients: solvent evaporation and contact line pinning. Here, we demonstrate that the CRE also occurs when the solvent of a pinned sessile drop transfers into another liquid, without involving any evaporation. We show that it shares all characteristic features of the evaporative CRE: solvent transfer-driven transport of solutes to the contact line, ring-shaped deposit, closely-packed particle organization at the contact line, and size-dependent particle sorting. We thus suggest expanding the definition of the coffee-ring effect to any pinned drop having its solvent transferring to an outer medium where the drop compounds cannot be dissolved.
Plasma-Induced Polymerizations: A New Synthetic Entry in Liquid Crystal Elastomer Actuators
Bin Ni Mengxue Zhang Cédric Guyon Patrick Keller Michael Tatoulian Min
First published - 41 19 - https://doi.org/10.1002/marc.202000385 - 2020
The research on soft actuators including liquid crystal elastomers (LCEs) becomes more and more appealing at a time when the expansion of artificial systems is blooming. Among the various LCE actuators, the bending deformation is often in the origin of many actuation modes. Here, a new strategy with plasma technology is developed to prepare single‐layer main‐chain LCEs with thermally actuated bending and contraction deformations. Two distinct reactions, plasma polymerization and plasma‐induced photopolymerization, are used to polymerize in one step the nematic monomer mixture aligned by magnetic field. The plasma polymerization forms cross‐linked but disoriented structures at the surface of the LCE film, while the plasma‐induced photopolymerization produces aligned LCE structure in the bulk. The actuation behaviors (bending and/or contraction) of LCE films can be adjusted by plasma power, reaction time, and sample thickness. Soft robots like crawling walker and flower mimic are built by LCE films with bending actuation.
Fast carbonylation reaction from CO2 using plasma gas/liquid microreactors for radiolabeling applications
Marion Gaudeau, Mengxue Zhang, Michaël Tatoulian, Camille Lescot and Stéphanie Ognier
Reaction Chemistry & Engineering - 5 1981-1991 - doi.org/10.1039/D0RE00289E. - 2020
Carbon-11 is undoubtedly an attractive PET radiolabeling synthon because carbon is present in all biological molecules. It is mainly found under 11CO2, but the latter being not very reactive, it is necessary to convert it into a secondary precursor. 11CO is an attractive precursor for labeling the carbonyl position through transition-metal mediated carbonylation because of its access to a wide range of functional groups (e.g., amides, ureas, ketones, esters, and carboxylic acids) present in most PET tracer molecules. However, the main limitations of 11CO labeling are the very short half-life of the radioisotope carbon-11 and its low concentration, and the low reactivity and poor solubility of 11CO in commonly used organic solvents. In this work, we show that a possible solution to these limitations is to use microfluidic reactor technology to perform carbonylation reactions, whilst a novel approach to generate CO from CO2 by plasma is described. The methodology consists of the decomposition of CO2 into CO by non-thermal DBD plasma at room temperature and atmospheric pressure, followed by the total incorporation of CO thus formed in the gas phase by carbonylation reaction, in less than 2 min of residence time. This “proof of principle” developed in carbon-12 would be further applied in carbon-11. Although considerable advances in 11CO chemistry have been reported in recent years, its application in PET tracer development is still an area of work in progress, because of the lack of commercially available synthesis instruments designed for 11C-carbonylations. To the best of our knowledge, such an innovative and efficient process, combining microfluidics and plasma, allowing the very fast organic synthesis of carbonyl molecules from CO2 with high yield, in mild conditions, has never been studied.
Coupling experiment and simulation analysis to investigate physical parameters of CO2 methanation in a plasma catalytic hybrid process
Bo Wang Maria Mikhail Maria Elena Galvez Simeon Cavadias Michael Tatoulian Patrick Da Costa Stéphanie Ognier
First published - 17 9 - https://doi.org/10.1002/ppap.201900261 - 2020
This study focuses on the use of a heterogeneous catalyst Ni/Ce0.58Zr0.42O2 to study the Sabatier reaction in conventional catalytic thermal heating and the dielectric barrier discharge plasma‐catalytic process. Its aim is to study the threshold temperature of the Sabatier reaction in plasma conditions. A set of experiments with different inlet flow rates is carried out in a plasma reactor to investigate the steady‐state temperature of the reaction. To estimate the threshold temperature of the Sabatier reaction more accurately, the temperature difference between the catalytic bed and the external surface of the reactor is calculated and simulated in COMSOL Multiphysics® software. Finally, the threshold temperature of the Sabatier reaction during plasma processing is assumed to be 116°C, based on the experimental data and simulation analysis.
Electrocatalytic behaviour of CeZrOx-supported Ni catalysts in plasma assisted CO2 methanation
Maria Mikhail, Patrick Da Costa, Jacques Amouroux, Siméon Cavadias, Michael Tatoulian, Stéphanie Ognier and María Elena Gálvez
Catalys Science & Technology - 10 4532-4543 - https://doi.org/10.1039/D0CY00312C - 2020
Plasma-catalytic and thermo-catalytic methanation were assayed in the presence of a CeZrOx-supported Ni catalyst, proving that high CO2 conversions and high methane yields can be obtained under dielectric barrier discharge (DBD) plasma conditions and that they are maintained with time-on-stream over 100 h operating time. The characterization of the spent catalysts through TPD-MS, ATR-FTIR, TEM and HR-TEM and XRD evidenced the coexistence of a Ni0/NiO phase together with an increased presence of Ce3+ cations and oxygen vacancies, on the surface of the catalyst submitted to plasma catalytic operation. The different facts collected through physicochemical characterization point to our catalyst behaving like a PN junction, or like a fuel cell, with a P-side, the anode, i.e. the Ni-side releasing electrodes, while the CeZrOx support, N-side and cathode, acts as an acceptor. The DBD plasma, rich in ionic species and free electrodes, acts as the electrolyte, conducting the electrodes in the right direction. Oxygen accumulation on the surface of the catalyst during thermo-catalytic methanation leads to the formation of non-reactive adsorbed species, whereas Ni-sintering is favored. Under DBD plasma conditions, electron transfer is guaranteed and the adsorption–desorption of reactants and products is favored.
Ni-Fe layered double hydroxide derived catalysts for non-plasma and DBD plasma-assisted CO2 methanation
D Moreno, MV Ognier, S Motak, Grzybek, T Da Costa, P Galvez
Catalys Science & Technology - 45 17 - DOI: 10.1016/j.ijhydene.2019.06.095 - 2020
A series of bi-metallic layered double hydroxide derived materials, containing a fixed amount of Ni promoted with various amounts of Fe were obtained by co-precipitation. The synthesized materials were characterized by X-ray diffraction (XRD), temperature-programmed reduction (H 2-TPR), temperature-programmed desorption of CO 2 (CO 2-TPD), elemental analysis and low temperature N 2 sorption and tested as catalysts in CO 2 methanation at atmospheric pressure. The obtained results confirmed the formation of mixed nano-oxides after thermal decomposition of the precursor and suggest successful introduction of both nickel and iron into the layers of Layered Double Hydroxides (LDHs). The introduction of Fe into the layered double hydroxides changed the interaction between Ni and supports matrix as proven by temperature programmed reduction (H 2-TPR). The introduction of low amount of iron influenced positively the catalytic activity in CO 2 methanation at 250 C, with CO 2 conversion increasing from 21% to 72% with CH 4 selec-tivity ranging from 97 to 99% at 250 C. No other products, except CH 4 and CO were registered during the experiments. In order to enhance the catalytic activity a non-thermal plasma created by dielectric barrier discharge was applied. The obtained results prove that * Corresponding author.
Plasma deposited high density amines on surface using (3- aminopropyl)triethoxysilane for assembling particles at sub-nano size
Xi Rao , Ali Abou Hassan , Cédric Guyon , Stephanie Ognier , Michaël Tatoulian
Reaction Chemistry & Engineering - - DOI: 110.1016/j.matchemphys.2019.121974 - 2020
Although solid particles assembling on substrate surface is one of the key points for
developing membrane reactors, the technology of organizing nano/sub nanometer building
blocks into complex structures is still a challenge to scientists in years. In this work, amine
functional groups were deposited on the surface of different substrates via plasma enhanced
chemical vapor deposition (PECVD) technology and (3-aminopropyl)triethoxysilane
monomers were used as precursors. The influence of active gas, substrates, as well as
deposition time on the physico-chemical features of as-deposited film were investigated,
respectively. The highest density of amine of 5.5% on surface was obtained when Ar was
utilized as active gas and deposition time was 40 s. Furthermore, Y type zeolite particles at
sub-nano size were synthesized and subsequently used as a model material for testing the
immobilizing ability of plasma treated surface. The results clearly confirmed that a dense
mono or multi-layer of closely packed zeolite particles could be formed on the APTES as-
deposited surface after 24 hours’ immersion and the surface area of substrate could be
improved by the deposition of zeolite.

584 publications.